
 S.C.R.E.A.M – program documentation

 1-1

Superconducting Relativistic
Particle Accelerator Simulation

A program description

P. Bauer1, G.W. Foster, M. Huening

Abstract --- The following note describes a computer code used for the
simulation of the acceleration of a pulsed beam through a linac
composed of superconducting cavity resonators. This program was
developed by M. Huening for the simulation of the longitudinal beam
dynamics in the Tesla Test Facility (TTF) at DESY. The inner workings
of the different modules composing the S.C.R.E.A.M program are
described, including a detailed discussion of the program input,
commented flowcharts and a detailed documentation of the algorithm.
The program is now being used for the simulation of the proposed
Fermilab Proton-Driver.

1 pbauer@fnal.gov

Fermi National Accelerator Laboratory
PO Box 500

Batavia, IL 60510
TD-04-031
May 2005

 S.C.R.E.A.M – program documentation

 1-2

TABLE OF CONTENT

1 SUMMARY 1- 3

2 INTRODUCTION 2- 1

3 INPUT 3- 1

3.1 Basics 3- 1
3.2 General Field 3- 1
3.3 Cavities Field 3- 3
3.4 PhaseLoop Field 3- 6
3.5 Bunches Field 3- 6

4 PROGRAM STRUCTURE 4- 1

4.1 Setting up the Program 4- 1
4.2 scream.m 4- 2
4.3 LoadInput.m 4- 5
4.4 Prerun.m 4- 6
4.5 acceleration.c 4- 8
4.6 SimulateField.m 4-13
4.7 detuning.m 4-29
4.8 dimsum.c 4-31
4.9 dophaseloop.m 4-33

5 EXAMPLE – FERMILAB PROTON DRIVER 5- 1

5.1 Fermilab Proton Driver 5- 1
5.2 S.C.R.E.A.M Input 5- 2
5.3 PreRun Calculation 5- 8
5.4 Full Run - One Pulse 5-10

6 APPENDIX A 6- 1

7 APPENDIX B 6- 9

8 APPENDIX C 6-12

 S.C.R.E.A.M – program documentation

 1-3

1 SUMMARY

S.C.R.E.A.M is a computer code used for the simulation of the
longitudinal beam dynamics in a linac composed of superconducting
cavity resonators. It was developed by M. Huening (DESY) and
incorporates the operating experience of the Tesla Test Facility (TTF)
at DESY. It is now being adapted for the simulation of Fermilab’s
Proton-Driver (PD).

Optimizing the acceleration of a beam through a string of
accelerating cavities requires careful control of the phases and
amplitudes of the RF fields in the cavities. This is especially true in low
beta (β<1) sections of the linac, where the beam velocity changes
continuously, while the cavity-β changes only in a few discrete steps.
The RF control system is further complicated in the case in which
multiple cavities are driven by one klystron. The changing beam
velocity also results in increased beam loading along the cavity string,
demanding additional adjustment of the cavity fields. In addition,
superconducting cavities have a very narrow bandwidth (1 kHz or less)
and are therefore susceptible to minute deformations of their shape
caused by microphonics or electromagnetic pressure (“Lorentz-force
detuning”). These and other effects have to be taken into account in
the design of the RF control system.

The S.C.R.E.A.M program is a tool to calculate the optimal phase and

amplitude settings for the superconducting RF cavities in a linac. It
implements fast RF control techniques such as vector-sum regulation
feedback and fast ferrite vector-modulators as proposed for the
Fermilab PD. The program output consists of the beam footprint in
longitudinal phase-space along the linac. The program also allows
exploration of the energy (E) and time (t) acceptance of the linac with
the simulation of the effect of E/t jitter of the incoming beam. This
program was already used to specify the range and dynamic response
of the fast ferrite vector-modulators for the Fermilab PD.

This note describes the inner workings of the different modules
composing the S.C.R.E.A.M program in its current form, which includes
special adaptations to the Fermilab PD linac. The code is attached to
this note. Extensive derivations were relegated to the appendix to
keep the program description compact. Table 1-1 gives the
nomenclature conventions for this document.

 S.C.R.E.A.M – program documentation

 1-4

Table 1-1: S.C.R.E.A.M nomenclature.

Parameter Symb Comment
of cavities Ncav
of RF modules (index) Nm(nm) one RF module can contain several RF cavities
of cavities per RF modules Ncm one RF module can contain several RF cavities
Quality factor QL loaded
Quality factor Q0 unloaded
Cavity beta βc design value
of cells Nc in cavity
Length of cavity cell Lc from cell center to cell center
Cavity frequency ωRF 2πfRF
Cavity bandwidth ω12 =ωRF/2/QL, half-width, half-maximum
Cavity gap factor λ ratio of Lc to RF wave-length (c/fRF), usually 0.5
Cavity norm shunt impedance r Rsh/Q0, for fundamental (accelerating) mode
Cavity loaded impedance RL RL=rQL, mostly Rext in over-coupled case
Linac coordinate z position of cavity (m)
On axis electric field E(z) (MV/m)
On axis electric field E

)
 peak-field (MV/m)

Voltage per cavity (total) Vcav ∫ dzzE)(, real, set-field

Voltage per cavity (total) V
)

 complex, actual field including phase factor

Relative voltage v norm. to 1, used for filling curve, to be multiplied with Vcav
Beam-loading voltage ∆Vb voltage reduction in cavity due to beam passage
Forward voltage Vfwd accel. voltage delivered to cavity from klystron (MV)
Forward voltage signal SVfwd voltage signal provided by control system (MV)
Forward power Pfwd Power delivered into cavity from klystron (W)
Feed forward power Sfwd0 set-table value provided to control system (MV/(Ω)0.5)
Lorentz-detuning constant KL in Hz/(MV)2, note the unusual units
Lorentz-detuning constant KL0 in Hz/(MV)2, initial, as defined in input
Lorentz-detuning spread ∆kL σ of Lorentz detuning const. distribution (relative to KL)
Lorentz-force-detuning ∆ωLF 2π x (detuning frequency in Hz)
LF-detuning compensation ∆ωL feed-forward setting to compensate for Lorentz-detuning
Microphonics-detuning const. Km microphonics detuning const. (in Hz)
Microphonics-detuning spread σm σ of microphonics detuning const. distribution (in Hz)
Fast microphonics spread σmf σ of fast microphonics detuning const. distribution (Hz)
Total detuning ∆ω Lorentzforce and microphonics detuning (rad-Hz)
Time constant τc cavity (mechanical) time constant for detuning (“ringing”)
of time steps Ns Ns=Nfill+Nbeam
Time step ∆t usually 1 µsec (= bunch spacing)
Beam-on time tb =pulse time – fill time (sec)
of time steps with beam Nb =number of bunches
Cavity fill time-constant τf fill-time constant (=2QL/ωRF=1/ω12)
Cavity fill time-constant FTayl fiddle factor to set the non-linearity of filling (∈(0.1))
Fill-time tf =pulse time – beam-on time (sec)
of steps during fill-time Nf
Filling delay tfo cavity filling delay with respect to other cavities
of particles per bunch N related to average pulse current with Ib∆t/q
of macro-particles Nmpb per bunch
Particle number distribution n normalized fraction of particles contained in each macropart
Charge of single particle q usually in units of elementary charge
Mass of single particle m in units of MeV
Beam current Ib general, bunch charge / bunch spacing (A)

 S.C.R.E.A.M – program documentation

 1-5

Macroparticle current Iini start value (A)
Macroparticle current I0 start value, before fluctuations (A)
Beam energy E general particle energy (usually in MeV)
Beam energy Eini0 start energy offset of synchronous particle (MeV)
Beam energy Eini start energy of mp (MeV)
Beam energy E0 start energy of mp relative to bunch centroid (MeV)
Beam energy Ecoh coherent (fixed during pulse) bunch centroid energy offset
Beam energy Efluc incoherent (changes bunch to bunch) centroid energy offset
Beam energy Esync energy of synchronous particle (usually in MeV)
Arrival energy difference de with respect to synchronous particle (MeV)
Beam beta βb beam velocity normalized on c
Beam phase advance φ0 usually negative (~-10° to -20° for protons) (rad)
Phase difference ∆φ with respect to synchronous phase (rad)
Transit time factor T’ normalized to 1
Transit time factor Tsync’ for synchronous particle, normalized to 1
Time t general (usually in sec)
Start time tini0 start time offset of synchronous particle (sec)
Start time tini start time of macroparticle (sec)
Start time tcoh coherent (fixed during pulse) bunch centroid time offset
Start time tfluc incoherent (fixed during pulse) bunch centroid time offset
Arrival time ta In each cavity center (sec)
Arrival time (synchronous) tsync for synchronous particle, in center of cavity (usually in sec)
Arrival time difference dt with respect to synchronous particle (sec)
Injection time sigma σt0 for Gaussian macroparticle distribution in bunch (sec)
Injection energy sigma σE0 for Gaussian macroparticle distribution in bunch (MeV)
Injection time sigma σtcoh coherent (same for whole pulse) (MeV)
Injection time sigma σtfluc incoherent (different from bunch to bunch) (MeV)
Injection energy sigma σEcoh coherent (same for whole pulse) (MeV)
Injection energy sigma σEfluc incoherent (different from bunch to bunch) (MeV)
Injection current sigma σIcoh coherent (same for whole pulse) (MeV)
Injection current sigma σIfluc incoherent (different from bunch to bunch) (MeV)
of branches Nbranch in macro-particle phase-space
of sigmas Nσ in macro-particle phase-space
Random number R usually obtained with MATLAB randn function
of phase-shifters Ng usually only in the low beta section
Feedback gain G gain in vector-sum feedback loop (prop)
Forward power attenuation a attenuation of klystron forward power (relative to 1)
Vector-modulator correction ∆Vps Complex voltage, to be provided by phase-shifter (MV,rad)
Phase shift ψ1 phase-shifter branch 1 (rad)
Phase shift ψ2 phase-shifter branch 2 (rad)
Phase shift φps total phase shift produced by phase-shifter (rad)
Vector-modulator atten./shift Aps complex signal from PS (atten rel. to 1), phase (rad)
Vector-modul. phase offset ψ0 operating point of phase-shifter (rad)
Vector-modul. reactive power Rps reflection produced by phase-shifter (relative to 1)
Phase shifter time constant τps dynamic response of phase shifter (sec)
Phaseshifter proportional gain GAps amplitude proportional gain (prop)
Phase shifter differential gain DAps amplitude differential gain (prop)
Phaseshifter proportional gain Gpps phase proportional gain (prop)
Phase shifter differential gain Dpps phase differential gain (prop)
Phase shifter saturation ψsat max phase response of phase shifter (rad)
Phase-shifter aux. parameter Sps auxiliary parameter (sin(ψ 0)
Vector-mod reflection gain GR proportional gain of reflected signal (prop)
of runs Nruns = # of RF pulses with a new set of Km for each cavity

 S.C.R.E.A.M – program documentation

 1-6

of files Nfiles =# of runs with a new set of KL for each cavity
Auxiliary parameter α βc/βb

A recent publication is recommended as a fast introduction to this
program2.

Common abreviations:

mp … macro-particle,
b …. Bunch,
m … module,
L … Lorentz,
0 … bunch-centroid,
ini … initial,
sync … synchronous,
coh … coherent,
fluc … incoherent,
cav …. cavity,
f .. fill,
fo .. fill-off,
RF … radio-frequency

Indices:

i….time steps (or bunches)
j….cavity number
l….module number
k…macro-particle
g…phase-shifter number

Other important conventions:

bunch number=time step
run=RF pulse, file=series of runs (with different KLj)
matrix convention (ROWS, COLUMNS), as in MATLAB
array counting usually starts at 1
time step cannot easily be changed from 1 micro-sec (hard-coded)!

2 M. Huening et al., “Simulation of RF Control of a Superconducting Linac for Relativistic Particles”,
Proceedings of the European Particle Accelerator Conference, EPAC 2004, July 2004 Lucerne, Switzerland

 S.C.R.E.A.M – program documentation

 1-7

2 INTRODUCTION

S.C.R.E.A.M is a MATLAB based program that simulates the passage
of a bunched beam through a linear accelerator made of
superconducting cavities. It is particularly optimized for the simulation
of the effects of cavity detuning due to Lorentz-force and microphonics
as well as beam loading together with the corrective actions taken by
the RF power system such as vectorsum control and individual cavity
vector-modulators. It also takes into account jitter of the injected
beam in energy, arrival-time and current. The major output
parameters are listed in Table 4-3. The most important are the energy
and arrival time of each particle in each cavity (and in particular in the
last cavity). This information can be used to derive the beam footprint
in longitudinal phase-space at any position in the linac. This is also
relevant for the estimation of beam loss. Another important output
consists of the operational parameters of all cavities in the linac as
function of time. These include the field amplitudes and phases, the
forward power and vectorsum control signal, the phase-shift and
attenuation provided by the fast vector-modulators.

Each run in S.C.R.E.A.M calculates the acceleration of one beam
pulse. Several runs can be simulated in one “file”. The beam pulse (or
run) contains many bunches. The beam pulse is only one part of the
RF pulse, which also includes the cavity filling. Obviously the beam is
launched only once the filling is completed. To limit computing time
the particles in a bunch are regrouped into macro-particles, which
have the mass and charge proportional to the sum of the particles
contained in them but are regarded as single particles during the
simulation of the acceleration in the linac. The exact number of single
particles contained in each macro-particle is taken into account when
the beam loading is calculated. The macro-particles are distributed in
longitudinal phase-space such as to simulate the distribution of
particles in a real bunch. Although more granular, the bunches in
S.C.R.E.A.M occupy more or less the same footprint in phase-space as
the real bunches. The bunch-charge, bunch-centroid energy and
arrival time at injection are randomly varied bunch-to-bunch
(“incoherent”) and pulse-to-pulse (“coherent”) to explore the
longitudinal acceptance of the linac. The program also provides the
option to simulate different particle species.

 Once the structure of the linac (= sequence of superconducting
cavities) is defined in the input file, the program sequentially
calculates the energy/time profile of the macro-particles along the
linac. This requires the simulation of the effective accelerating voltage

 S.C.R.E.A.M – program documentation

 1-8

provided by each cavity to each macro-particle. The effective
accelerating voltage of each cavity is not only determined by the
particular cavity design field, but also by the phase difference of the
particle with respect to the cavity RF phase. Furthermore voltage
attenuation and phase error ensue in the case of detuning of the
cavity, i.e. the shift of the cavity resonance frequency from the (fixed)
klystron frequency as a result of minute mechanical deformations
related to Lorentz-force and micro-phonics.

 Most important is the effect of the mismatch between the cavity
design beta and the particle velocity. This effect is described by the
transit time factor. The transit-time-factor describes the reduction of
the effective acceleration of a particle due to the beta-mismatch
between the cavity (βc) and the particle (βb), which is especially
important in long multi-cell cavities. It also includes the effect of the
sinusoidal variations of the accelerating field in the cavity in time and
space on the effective acceleration of the beam. It assumes, however,
that the particle is synchronous, i.e. that its phase is optimal with
respect to the RF phase.

Then, typically the beam phase in proton linacs is offset by ~-20°

(the so called phase advance) to obtain gradient (or phase-) focusing
of the bunch. Gradient focusing consists of accelerating the beam
ahead of the RF crest so that the slower particles are accelerated more
than the faster particles. The gradient focusing is more effective the
heavier the particles and the lower their speed. Finally, the particle
phase difference due to injection jitter scatters the particle phase
around the phase advance setting. The phase-factor is also strongly
affected by detuning and beam loading in the cavities because of the
ensuing variations of the amplitude and phase of the cavity
accelerating voltage and thus on the cumulative acceleration history of
each particle.

Once the corresponding beam phases are calculated, the induced

field (or beam loading) is subtracted from the cavity field. The re-fill of
the cavity is simulated assuming constant klystron power. The forward
power from the klystron to the cavities is adjusted (with feed-forward
and feedback) such as to keep the cavity voltage and phase constant.
The feed-forward settings take into account the expected beam
loading and Lorentz-force detuning. Since RF-modules typically consist
of several cavities, special techniques are needed to regulate the RF
power and phase in the individual cavities, which may differ in their
detuning and beam-loading. At the klystron level the phase and
amplitude of the RF signal is typically regulated using vector-sum

 S.C.R.E.A.M – program documentation

 1-9

regulation. Vector-sum regulation consists in summing the vectors,
defined by the phase (direction of vector) and amplitude (length of
vector) measured in each cavity, to derive the klystron RF phase and
amplitude setting that produce the desired sum vector. In the Fermilab
PD it is also proposed that the phase and amplitude in the individual
cavity be regulated with fast ferrite vector-modulators (or E-H tuners).
S.C.R.E.A.M is capable of simulating both vector-sum control at the
module level and individual cavity vector-modulators.

Constant phase offset settings such as the synchronous phase and

the beam phase advance are programmed into the low level RF system
that drives the klystron RF phases with respect to the master oscillator
(and with wave-guide length differences as well as the three-stub
tuners for the cavity-to-cavity differences within a module). The
program obviously assumes that the synchronous phase was
determined and all phases used are therefore with respect to this
phase.

With a typical time-step of 1µs, a thousand bunches are simulated for
a typical beam-pulse of 1ms duration. A bunch moving with c travels
300 m during 1µs. A bunch is therefore usually at the end of the linac
before the next is launched. The program therefore describes the
progression of a bunch through the entire linac within one time-step3.
Obviously the many macro-particles of which the bunch consists are
also tracked independently through the linac. The cavity field
calculations (as well as the update of the feedback loops, etc..) are
performed once per time-step, hence the linac field configuration is
essentially static during the passage of the bunch. The previous
bunches affect the actual bunch only through the accumulated beam-
loading voltages.

The program produces a huge amount of data. All the data for the

first pulse simulated are saved in preresults.mat. For all other Nfiles
times Nruns pulses, only a subset of the data is stored. Regarding the
beam properties, for instance, the program only keeps the final energy
and phase error of the macro-particles in each bunch. Regarding the
cavity properties all relevant parameters for each cavity are stored,
with a point every Downsample time-steps. The data matrices are
stored in structures, while the matrices for all Nfiles times Nruns
pulses are stored in structure arrays. The so-called randstate variable

2 In the Fermilab Proton Driver the bunch spacing is much smaller that 1 µsec. The input into SCREAM
takes this into account by grouping as many PD bunches into a super-bunch such as to keep the average
beam current to the design value. This approach is valid for the calculation of beam-loading, for example,
but would need revision if space-charge effects are to be considered.

 S.C.R.E.A.M – program documentation

 1-10

is also stored for each pulse (run), such that the pseudo-random
number series needed to define the beam injection jitter, Lorentz-
detuning and microphonics can be recalled for detailed analysis. The
data arrays are saved in cavresults.mat and beamresults.mat MATLAB
data files.

 No wake-field effects, space-charge effects as well as intra-beam

scattering effects between macro-particles or bunches are considered.
Future additions to the program could include transverse focusing (first
experiments with a TRACE3D interface were already made) in order to
calculate the transverse phase space. The simulation of space charge
effects would certainly be another important contribution.

The program operates in a MATLAB environment. MATLAB is a special
purpose computer program, optimized to perform scientific
calculations. It implements MATLAB language and provides a very
extensive library of pre-defined functions. It is in particular optimized
for the handling of matrix mathematics. That simplifies the handling
and plotting of the large amounts of data calculated with a beam-
tracking program of the kind discussed here. The main disadvantage of
MATLAB is that it is slower than compiled languages, the consequence
of being an interpreted language. For that reason S.C.R.E.A.M uses C-
language programs in the tracking part of the program. The c-
routines, however, are slowed down by the MATLAB-C data format
conversion steps required. S.C.R.E.A.M consists of a lose assembly of
several files, which need to be installed together. S.C.R.E.A.M should
be launched from the directory where all the Scream files are located.
These files are listed in Table 4-1. The input file, linac.csv, is not listed
there. In order to tell the program where to look for the input file, the
datadirectory variable needs to be set. Per default
datadirectory=’run0data’, thus it is best to copy linac.csv into the
folder run0data, which needs to be in the same directory as the
Scream files. The program is started by typing scream into the
MATLAB command window, which starts the scream.m script. Before
calling scream.m, however, the debugging variable, which
discriminates between the different implementations of the program,
can be specified. If debugging is not set, the default value of zero is
assumed and the complete program version is launched. Other
debugging options are discussed in chapter 4. The input file needs to
be in the form of a comma-separated list file, which uses MATLAB
nomenclature to define structure variables ({ }), comments (%), etc.
The solution chosen here is to save the Excel spreadsheet as a .csv
type file. The program can be run both in a Unix and Windows
environment, once the respective versions of MATLAB are installed.

 S.C.R.E.A.M – program documentation

 3-1

3 INPUT

3.1 Basics

The input into S.C.R.E.A.M consists of defining several MATLAB

structure variables. MATLAB structure variables can contain multiple
arrays of arbitrary dimensions. In this case the structures contain
mostly vectors and matrices. The units are usually S.I. with the only
notable exception that accelerating voltages in the cavities are
assumed to be in MV and that beam and particle energies are given in
MeV. That allows the accumulated accelerating voltage to be directly
translated into beam energy. To cut processing time, as many
calculations as possible are performed in the input, generated with an
Excel spreadsheet. The input file is saved as a comma-separated list
file (csv) in the run0data directory to be read by MATLAB routines.
Note that MATLAB interprets the ‘%’ as comment delimiter. The
structure variables defined in the input are called General, Cavities,
Phaseloop and Bunches. General defines general variables such as
step-size and the number of output files. Cavities defines the
properties of all cavities in the linac in the order in which they are
installed. Phaseloop contains the parameters of the individual cavity
phase shifters, if there are any. Bunches defines the beam properties,
such as macro-particle charge and phase-space distribution at the
start of the linac.

Each beam-pulse contains as many bunches as there are time-steps

during the beam-on part of the RF pulse (which also includes the filling
time). The total number of pulses simulated is given by Nfiles x Nruns.
The separation into two groups of files allows the independent
variation of different parameters. For instance the set of Lorentz-force
detuning constants distributed randomly over all cavities is defined
once for all Nruns within one Nfiles, while the slow/fast micro-phonics
constants of all cavities are randomly recalculated for every Nruns/Ns.

The input-file, linac.xls, allows initialization and definition of the

structure variables introduced above. These variables are discussed in
detail in the following.

3.2 General Field

The General structure variable consists of eleven scalar fields, which
hold a set of general parameters as listed in Table 3-1. Most of them

 S.C.R.E.A.M – program documentation

 3-2

are parameters describing the jitter of the beam energy, arrival-time
and current at injection. General provides the half-width sigmas of the
Gaussian distributions of the bunch centroid (or bunch mean) energy
(in MeV), starting time (in sec) and current (in %) for each pulse
(coherent) and for each bunch (incoherent). (Note that, as will be
discussed in further detail in section 3.5, the particles within the bunch
are also Gauss-distributed in longitudinal phase-space around the
centroid.) The half-widths of the Gaussian particle number
distributions within the bunches are given in the Bunches field. The
sigmas are multiplied with a MATLAB generated random number (∈(-
1,1)) in subsequent sections of the program to derive the actual bunch
centroid starting energy, time and charge. To obtain statistical
significance several runs (= beam pulses) need to be performed for
each set of input parameters.

A bunch is launched into the linac at every time step during the
duration of the beam pulse. In a further extension of this principle
there are in fact two parameters: Nfiles – the number of files - and
Nruns - the number of RF pulses per file. The separation into Nfiles
and Nruns allows for the variation of different parameters from one set
of runs to the next. Currently, for instance, the Lorentz-force detuning
constant is randomly varied from file to file. The microphonics
detuning on the other hand, is randomly varied from run(pulse)-to-run
(slow) or bunch-to-bunch (fast).

The General structure also contains the fast ferrite vector-modulator

dynamic response time constant, since this number is subject to
change depending on the ongoing hardware development.

Table 3-1: Fields in the General structure-variable. *added by LoadInput.m during runtime.

Field Comment typical
Title string -
Efluc σ of distrib. of bunch centroid initial E (incoh.) (scal) 50 keV
Tfluc σ of distrib. of bunch centroid start time (incoh.) (scal) 5.8 ps
Ifluc σ of distrib. of total bunch charge (incoh.) (scal) 1%
Ecoherent σ of distrib. of bunch centroid initial E (coh.) (scal) 50 keV
Tcoherent σ of distrib. of bunch centroid start time (coh.) (scal) 5.8 ps
Icoherent σ of distrib. of total bunch charge (coh.) (scal) 1%
Stepsize time step of calculation, bunch spacing (scal) 1 µs
Downsample reduction factor for program output time-step (scal) 1
Filltime fill-time of cavities (applies to all cavities) (scal) 500 µs
Beamtime duration of beam pulse (scal) 800 µs
PhaseTau phase-shifter dynamic response time (scal) 150 µs
Nfiles number of simulations (scal) 1
Nruns number of runs per simulation (scal) 1
doPhaseloop 1 or 0, depending on whether Phaseloop exists or not 1*

 S.C.R.E.A.M – program documentation

 3-3

3.3 Cavities Field

The cavity parameters needed in the simulation are listed in the
Cavities structure of the input file. The Cavities fields are listed in

Table 3-2: Fields in the Cavities structure-variable. All fields are of dimension (Ncav). *overwritten
during runtime by Prerun.m.

Field Comment unit symb
CavNo number of cavity - j
Module number of Module to which the cavity belongs - nm
Beta design-beta of the cavity - βc
Position position of the cavity center along linac (calcul. from n-1 position and

Neighbour)
m z

Neighbour distance between cavity center and center of previous cavity m ∆z
AmpGen ∫ dzzE)(as obtained from cavity design codes MV Vcav

Amplitude set-amplitude used in calculation, can be different from Ampgen MV Vcav
Phase beam phase advance (relative to synchronous phase, usually

negative, set manually)
deg φ0

Feedback proportional feedback gain for module, will be overwritten during
runtime in LoadInput.m with average gain/cavity

prop. G

Cells number of cells in cavity - Nc
GapLambda ratio of cavity cell length / RF wave-length (typically 0.5) - λ
Time arrival time of particle in cavity, automatically calculated by program

when (–1), will be overwritten by Prerun.m with synchronous phase
s tsync

Frequency cavity operational frequency Hz fRF
QloadedAve external cavity Q for fixed input coupler setting - QL
Qloaded actual value used in calculation, can be different from QloadedAve - QL
Attenuation attenuation of forward signal, relative to forward amplitude rel. a
Rshunt normalized cavity shunt impedance, Rsh/Q0 Ω r
Microphonics σ of cavity frequency shift (Gaussian) due to slow microphonics Hz σm
FastMicroph. σ of cavity frequency shift (Gaussian) due to fast microphonics Hz σmf
Mode e.g. 3.1415 for π-mode (rad) −
dw feed-forward detuning of cavity to anticipate Lorentzforce detuning,

= 2πxKL0xVcav2 , will be overwritten during runtime in scream.m
using the actual KL including the random variation for every Nfiles

(rad-
Hz)

∆ωL

KLorentz Lorentzforce detuning constant, note the unusual units (integation
over cavity length (division by (LcxNc)2) is done in the input)

Hz/
(MV)2

KL0

Kspread σ of Gaussian distribution of Lorentz-force detuning constants,
relative to KLorentz

(0,1) ∆KL

FillOff delay of filling start (to allow for faster filling cavities, so that all
cavities are filled at the end of the fill-time)

µs tfo

BeamEnergy energy of synchronous particle (=q⋅Vcav⋅T’’), will be overwritten by
Prerun.m with E of synchronous particle incl. beam phase advance

MeV Esync

BeamBeta beam velocity, relative to c, calculated from BeamEnergy - βb
TTF transit time factor, will be overwritten by Prerun.m - T’
Atten not used (historical), added in LoadInput.m (default=1) rel. -
FillTau cavity fill-time, added in LoadInput.m if not specified (=2QL/ωRF) sec τf
FillTaylor fill-curve shape factor, will be added in LoadInput.m (∈0,1) - FTayl
ReactiveAmp gain of phase shifter reflected amplitude - added in LoadInput.m (=0) - prop
Reactive gain of phase shifter reflected phase - added in LoadInput.m (=0) - prop
Egain energy gain of sync. part. in each cavity, will be added in Prerun.m MeV dE

 S.C.R.E.A.M – program documentation

 3-4

Table 3-2.

The Cavities structure essentially contains all the relevant

information to describe the linac hardware (except for the fast vector-
modulators). In particular it encodes the cavity sequence. It consists
of 27 vectors with Ncav elements, where Ncav is the number of
cavities in the linac. The most important parameters are obviously the
position of each (center of the) cavity, its length, its number of cells,
the identifier of the RF module to which it belongs, the design
frequency and beta, the shunt impedance and loaded Q and the
average accelerating voltage over the cavity at design amplitude as
well as its detuning characteristics (fast and slow micro-phonics and
Lorentz-force detuning parameters). The issues related to detuning are
discussed in detail in chapters 4.2, 4.6 and 4.8. The Cavities structure
also includes settings, which are part of the amplitude and phase
control of the cavities. Among them for example the fill delay and the
(vector-sum) feedback gain (G) and individual cavity directional
coupler attenuation (a). Finally it also includes some information about
beam settings, such as the beam phase advance in each cavity, φ0, for
phase focusing.

The so-called Ampgen parameter is the total accelerating voltage,
integrated over the length of the cavity as given in Eq. (3-1) for the
case of a sinusoidal field shape. E

)
 is the on-axis peak electric field in

(MV/m), Lc the length of a cell and Nc the number of cells per cavity.
Note that Eq. (3-1) is only an approximation, since it calculates the
effect of a multi-cell resonator by multiplying the voltage provided in
one cell by the number of cells Nc. A more accurate calculation can be
performed with a finite-element code that computes the exact field
distribution, including drift sections between cells and the reduced
fields in the end-cells. It also does not apply to cases with non-
sinusoidal spatial field profiles (e.g. pill-box cavities).

() ()MVdz
Lc
zENcdzzENcVcav

LcLc

∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −≈≈

00 2
1 πcos

)
 (3-1)

The amplitude (Amplitude) that is actually used as the target

acceleration voltage in the simulation can be different from the design
amplitude. This can be useful to counteract varying transit time factors
across a module (by increasing the field where the transit time factor
is small, for example).

 S.C.R.E.A.M – program documentation

 3-5

The Phase factor allows defining a phase advance of the individual
cavities. In the particular case of S.C.R.E.A.M it mostly serves to set
the beam phase advance in each cavity. The phase-advance is
important for phase focusing, especially at low βb. Note that, as a
result of the way the model calculates the phase delay of the particles
in each cavity, the small phase offset due to the finite travel-time from
cavity to cavity does not need to be included in the phase-offset for
each cavity provided in the input file. S.C.R.E.A.M automatically
computes the synchronous phase (see the description of the
Prerun.m routine).

The proportional feedback (Feedback) is used for the vector-sum
control feedback. Although the vector has Ncav elements the values in
the input file are the gains applied to the sum signal in each module.
This vector is recalculated in LoadInput.m to divide the total gain in
each module by the number of cavities in each module. After the
transformation the Feedback vector contains the average gain per
cavity. This implementation was chosen because the vector-sum gain
in the low level RF system is of course the gain for the entire module
(and this is what needs to be given in the input). The feedback gain is
chosen higher in modules belonging to the low-beta section, because it
makes the feedback loop more sensitive and gives faster time
response. The feedback gain is somehow relaxed in the β=1 section.
Note that cable effects, temperature variations in the electronics and
noise in the detectors are also amplified with this gain! Also defined is
the feed-forward power attenuation a (relative to 1) to describe the
possible attenuation of the directional couplers routing the power to
the individual cavities. This factors is actually used to set small cavity-
to-cavity variations of the forward power as needed to reduce the
effects of beam loading variations along the cavities in a module. The
TESLA experience has shown that aj~T’-0.25 (where T’ is the normalized
transit time factor) gives good results.

The Time parameter allows pre-setting of the arrival time (e.g. in
case delay-loops or damping rings are to be included in the lattice).
Typically, however, it is set to (-1), which tells the program that the
arrival time is to be calculated by the program. The arrival time
calculation is a major part of the acceleration.c routine. Using this
routine the Prerun.m script calculates the arrival time and energy
gain of the synchronous particle in each cavity.

The cavity loaded Q (QL) is typically set to a value derived from the
expected beam loading. The QL actually used in the program can differ
slightly from the actual loaded Q. In driving the cavity off the optimum

 S.C.R.E.A.M – program documentation

 3-6

coupling condition (and raising the forward power by a similar factor),
the differences in beam-loading between the cavities in a module can
be leveled.

The input sheet also calculates the transit-time factor, T’, and the

beam energy (beam-beta, βb) of the synchronous particle in each
cavity. This calculation also serves to derive optimized settings of the
cavity voltage and attenuation as discussed above. The transit time
factor is discussed in further detail in chapter 4.5 in the context of the
description of the acceleration.c routine.

The fill-off parameter allows delaying of the filling of faster filling

cavities, such that all cavities are ready to accept beam at the same
time. The slowest filling cavities are filled according to the fill-time
defined in General and have a fill-off of zero. This feature is especially
important to take into account the change in filling time as a result of
tuning the QL of the cavities off optimum. The additional parameters
FillTau (cavity fill time constant, =2QL/ωRF) and FillTaylor (determines
deviation of fill-curve from linear shape, with 1 giving the linear shape)
are also used to describe the cavity filling. The FillOff, FillTau and
FillTaylor vectors are written by the LoadInput.m routine, if they are
not specified in the input file. The same is true for Atten, ReactiveAmp,
Reactive and Egain.

Six additional vectors are added by the program (Atten, FillTau,
FillTaylor, ReactiveAmp, Reactive, Egain). ReactiveAmp and Reactive
describe the gain of the signal reflected by the fast vector-modulator.

3.4 Phase Loop Field

The Phaseloop structure contains information about the fast ferrite
vector-modulators, a particular hardware component added to some of
the PD cavities. The fast vector-modulator allows to regulate phase
and amplitude of the individual cavities in order to provide the
additional regulation that the vector-sum control loop cannot provide.
It contains eleven fields, of which only CavNo and the major
proportional and differential gain factors (for the PID regulator) are
actually used. All other parameters are currently “hardcoded” and
cannot be varied individually for the cavities, as it would be the case in
reality. Table 3-3 summarizes the Phaseloop parameters. CavNo gives
the identifier of the cavities, which have a phase-shifter. Gain and
DGain are the proportional and differential gains for the phase-signal

 S.C.R.E.A.M – program documentation

 3-7

in the PID type vector-modulator implementation. AmpGain and
AmpDGain are the equivalent parameters for the amplitude signal.

The currently used input file also includes fields that can be useful for

future implementations of the program, but are not used at this point.

Table 3-3: Fields in the Phase-Loop structure-variable. All fields are of dimension (Ng).

Field Comment unit symb
CavNo number of Cavity (renamed to PLIdx later) - j
Gain proportional gain for phase correction signal prop Gpps
AmpGain proportional gain for amplitude correction signal prop GAps
DGain differential gain for phase correction signal prop Dpps
AmpDGain differential gain for amplitude correction signal prop DAps
Atten0 placeholder-not yet used, - -
PhIni placeholder-not yet used, - -
KPSnb placeholder-not yet used, - -
KSlnb placeholder-not yet used, - -
KBFnb placeholder-not yet used, - -
KCFnb placeholder-not yet used, - -

3.5 Bunches Field

The Bunches field defines the composition (number, charge and
mass) and the initial phase-space distribution (starting times and
starting energies as well as current) of the macro-particles in a bunch.
The mass (in MeV) and charge (in units of elementary charge) of the
macro-particles is set to the same as that of the single particles, since
the calculation of the effective acceleration in the cavity just depends
on the charge to mass ratio. The number of single particles contained
in the macro-particles, however, is important for the calculation of the
beam-loading in the cavities. The macro-particle populations obviously
need to add up to the specified total bunch population, which in turn
needs to be consistent with the average pulse current of the to be
simulated beam.

The general phase space distribution of the macro-particles as

defined in Bunches in its current implementation is shown in Fig. 3-1.
The Nmpb macro-particles per bunch are distributed in a “star-pattern”
along Nbranch lines azimuthally spread with the Angle parameter over
2π (360°/Nbranch angles). The particles are distributed at Nbranch
(typically 8) discrete angles in the starting time / starting energy plane
at up to Nσ (typically 9) energy- and time-sigmas, σE0 and σt0.
Therefore the Bunches vectors typically have (Nbranch×Nσ)+1

 S.C.R.E.A.M – program documentation

 3-8

elements. Eq. (3-2) defines the functions with which the phase space
coordinates of the macro-particles are calculated. The dashed lines in
the figure indicate contours of constant sigma. The contours in Fig. 3-1
were calculated for a Sigma Step of 1 σ. The center point in Fig. 3-1
corresponds to the synchronous particle, which arrives at time zero at
the center of the first cavity. This distribution centroid, however, varies
from case-to-case as discussed in the context of the General input field
and as will be discussed further below. The header parameters of the
Bunches structure, Input Time (sec) and Input Energy (MeV), are the
coordinates of the synchronous center-point of the particle distribution
in phase-space (tini0, Eini0). These parameters are essentially the
constant offsets of the phase-space distribution centroids to which the
variations defined in the General input field will be added later in the
program. The Time Sigma (sec) and Energy Sigma (MeV) given in
Bunches are the half-widths of the Gaussian macro-particle
distributions in phase space, which are invariable in the program
(while the centroid is subject to change). The Sigma Step describes
the number of sigmas, which are to be put between two macro-
particles and thus describes the coarseness of the macro-particle
distribution in phase-space. Note that the phase-space in Fig. 3-1 is
given in the most general form, namely in terms of sigmas of the
energy/arrival-time distributions. The sigmas are then quantified in
MeV and secs in the header of the Bunches structure. Fig. 3-1 also
indicates the order in which the macro-particles are defined in Bunches
(arrows).

The number of particles contained in each macro-particle decreases

according to a Gaussian function such as shown in Fig. 3-2. The
macro-particle population is calculated with Eq. (3-3). The macro-
particle current is also derived from the particle number distribution
(Eq.(3-4)). The input spreadsheet performs the calculation of the
Gaussian particle number distribution of the macro-particles in phase
space from the Gaussian mean and width, given in the header of the
Bunches field with this formalism. This distribution is normalized to
one and needs to be multiplied with the total number of particles per
bunch N to obtain the number of particles per macro-particle. The total
number of particles/bunch is adjusted such as to give the average
pulse current specified for the to be simulated beam.

 S.C.R.E.A.M – program documentation

 3-9

Table 3-4: Fields in the Bunches structure-variable. The fields in the rows starting with “Angle”
and below have dimension Nmpb. All other fields are scalars.

Field Comment unit symb
Input Time time offset of mean (centroid) of Gaussian particle

distribution in all bunches
sec tini0

Input Energy energy offset of mean (centroid) of Gaussian particle
distribution in all bunches

MeV Eini0

Time Sigma sigma for time-dimension of Gaussian particle
distribution

sec σt0

Energy Sigma sigma for energy-dimension of Gaussian particle
distribution

MeV σE0

Sigma Step distance betw. macro-particles in relative phase space
(multiples of σ)

- -

Angle angle in initial time / energy phase space for macro-
particle (360°/Nbranch)

deg -

Offset number of sigmas from mean (centroid) in Gaussian
particle number distribution

- Nσ

Energy initial energy of macro-particle MeV Eini
Time arrival time of macro-particle in first cavity sec tini
Mass rest-mass of particles (to discriminate e- from e.g. H-) MeV MeV
Charge charge of particles in units of the elementary charge - q
N number of particles per macro-particle - n
I “current” of macro-particle (Nq∆t, where ∆t is the

bunch spacing)
A I0

()

() Nbranchv
Nbranch

vtutininmt

Nu
Nbranch

vEuEininmE

k

k

,......,,sin,

,.....,,cos,

10360000

10360000

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅+=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅+=

o

o

σ

σσ

 (3-2)

Note that the lines in Fig. 3-1 fall in between sigmas, namely at
integer multiples of ∆σ/2. The sigmas refer to the Gaussian particle
distribution that defines the population of each macro-particle in the
bunch. The lines in the plot define the areas in phase-space over which
the Gaussian distribution is integrated to calculate the population of
each macro-particle. The relative particle number distribution, n(σ), is
given in Eq. (3-3). Note that the population of the centroid macro-
particle is calculated separately. Also note that the calculations are
given for a general ∆σ, which does not have to be an integer multiple
of sigma. The relative number distribution integrates to 1. The nu
needs to be multiplied with the number of particles per bunch N to
calculate the total number of particles per macro-particle. Since in the
real machine there often are several bunches during one time step of

 S.C.R.E.A.M – program documentation

 3-10

S.C.R.E.A.M (1 µsec), the charge needs to be accordingly redistributed
into bigger, but less frequent bunches for the purpose of the
simulation. The total number of particles per bunch is calculated from
the average beam current of the real machine (that is to be simulated)
and the time-step as given in Eq. (3-4).

()

1

2111
2

1

011801
2

1

1
0

122

0

2
1

2
1

2
2

8
2

0

2

0

2
20

2

2

2

22

2

2

2

2

2

2

=+=

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−==

==−==

∑

∫ ∫

∫ ∫

∞

=

∆
−

∆−⎟
⎠
⎞

⎜
⎝
⎛ +∆

⎟
⎠

⎞
⎜
⎝

⎛ −∆

−

∆
−

∆
−

u
ubranchtot

u
N

u

branch

u

u

r

branch
u

r

nNnn

uee
N

rdred
N

n

uerdredn

branch ,.....,

.

σ
σ

σ
σπ

σ

σ

σ

σ
σπ

σ

σ

φ
πσ

φ
πσ

 (3-3)

()AIIb
t

qNn
I

Nmpb

k
k

k
k ∑

−

=

=
∆

××
=

1

0
00 , (3-4)

The calculation in Eq. (3-3) is performed for circles in phase space.
These circles can be deformed into ellipses through assignment of a
particular σE0 and σt0 (e.g. 60 keV and 9.9 ps in the proton driver).

The phase space jitter of the bunch centroid at injection as well as the
fluctuations in bunch current are not calculated in the Bunches field,
but in the SimulateField.m routine of the program on the basis of the
statistical distribution widths given in the General field. The program
uses a random number generator to shift the center-point of the
distribution a fraction of sigma in starting time, starting energy and
total bunch current. The pulse-to-pulse (run-to-run) variations of the
time and energy centroids of the distribution as well as the bunch
current are calculated with the coherent sigmas. The bunch-to-bunch
variations of the time and energy centroids of the distribution as well
as the bunch current are calculated with the fluctuation (incoherent)
sigmas. The sum of the coherent and incoherent variations are then
added to the particle energy and time offset defined in Bunches to
produce the final phase-space centroid of the distribution used in the
bream tracking calculation. The random number generator function
parameters are stored with every seed such that the calculations can
be repeated. More details on this procedure can be found in the
discussion of SimulateField.m.

 S.C.R.E.A.M – program documentation

 3-11

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

Starting time (number of σ's)

St
ar

tin
g

en
er

gy
 (n

um
be

r o
f σ

's
) Pre-run

Figure 3-1: Initial distribution of macro-particles in longitudinal phase-space. The distribution is in
number of sigmas of the Gaussian distributions. The rings delimit the phase-space surface area
allocated for each of the n-sigma zones. Given that the representation is independent of the exact
energy and time sigma these zones are rings. All bunches in the simulations use this phase-
space distribution, except for coherent variations of all particles. Also shown is the order (starting
with the center particle) in which the macro-particles are defined in the input file (red arrows).

1E-17

1E-15

1E-13

1E-11

1E-09
1E-07

1E-05

0.001

0.1

10

0 1 2 3 4 5 6 7 8 9 10
Number of sigmas from centroid

Pa
rt

ic
le

 n
um

be
r d

is
tr

ib
ut

io
n

(r
el

at
iv

e
to

 1
)

Nrel

Figure 3-2: Normalized distribution of number of particles n(σ) per macro-particle as function of
number of σ from the centroid. Note that the relative particle number of the centroid is calculated
separately and that the sum of all particles (including the other Nbranch-1 branches) is 1.

 S.C.R.E.A.M – program documentation

 4-1

4 PROGRAM STRUCTURE

4.1 Setting up the Program

To execute the program all program-files need to be copied into the
working directory. Most of them are MATLAB type m-files. The list of
files is given in Table 4-1. They will be discussed in detail in the
following. The program is started by calling the main routine (scream)
in the MATLAB environment (typing scream in the MATLAB
environment). This launches the scream.m script. Note that first the
working directory in MATLAB needs to be set to the directory in which
all files are located. Two of the files (acceleration.c and dimsum.c)
are in c-code and need to be compiled once in MATLAB before the
program can run. The compilation, which produces the files, can be
done with the mex command from the MATLAB environment.

Before calling the scream.m script some program parameters need

to be set, among them the debugging variable (default: 0) and the
data-directory variable (default: ’run0data’). The debugging variable
gives choice between different levels of program execution (see 4.2 for
more details). The directory string variable datadirectory contains the
name of the folder, where the input file is located. The input loading
routine assumes that this folder is in the working directory. The basic
start-up commands are repeated below. The program will create the
cavityresults.mat and beamresults.mat datafiles, which contain the
results. The results of the first (debugging) run are stored in
preresults.mat. The data can be reloaded with the MATLAB load
command.

debugging=0;
datadirectory=’run0data’;

scream;
Table 4-1: Files required for the execution of Scream. Files with extension ‘.m’ are Matlab files.

Filename Comment
scream.m main program, executes different versions of program, saves data
LoadInput.m reads input file linac.csv
Prerun.m tracks synchronous pilot particle and the “synchronous” bunch
acceleration.c tracking routine, calculates E(t) for all macroparticles
SimulateField.m calculates cavity fields including detuning and feedback control of

amplitude and phase
detuning.m calculates Lorentzforce detuning due to cavity voltage
dimsum.c averages (complex) voltages of all cavities for each module for

vectorsum control
initiphaseloop.m initializes parameters for fast vector-modulator implementation
dophaseloop.m simulates the fast vector-modulator

 S.C.R.E.A.M – program documentation

 4-2

4.2 scream.m

Scream.m, albeit short, is in fact the main program, with as its main

purpose to call other scripts depending on the value of the debugging
variable, which discriminates between different program versions. If
debugging is not defined in the MATLAB environment before the
execution of scream.m, the variable is automatically set to zero.
Table 4-2 lists the different program options launched according to the
value of the debugging variable. Most of them consist in calling the
Prerun.m routine. The Prerun.m routine tracks a so-called pilot
particle and a pilot bunch through the linac. The pilot particle is
synchronous and therefore defines the synchronous phase.

Table 4-2: Different program options that can be selected with the debugging parameter.

debugging action Comment
0 (default),

>3
complete run simulates NfilesxNruns complete RF pulses

(Nb bunches with Nmpb macro-particles)
1 pre-run, beam

only
simulates the synchronous pilot particle

and one synchronous bunch
2 pre-run, beam

& cavities
pre-run with one RF pulse, includes simulation of

cavity fields (incl. feed-back & detuning)
3 pre-run, beam

& cav + save
pre-run with one RF pulse, includes simulation of

cavity fields, with save (preresults.mat)

SCREAM.M

P
R
E
R
U
N

2

3

0

DEBUGGING

LOAD-
INPUT.M

END

SIMULATE

FIELD.M

1

END

ENDSAVE
preresults.

mat

Kf=1….Nfiles

Kr=1…..Nrun

SIMULATE FIELD.M

SAVE
cavresults.mat , beamresults.mat

end

end

Complete run through
Nfiles x Nrun beam-
pulses. Lorentz-force
detuning is varied
randomly between
files; Cavity
microphonics are
varied from run to run.

SCREAM.M

P
R
E
R
U
N

2

3

0

DEBUGGING

LOAD-
INPUT.M

END

SIMULATE

FIELD.M

1

END

ENDSAVE
preresults.

mat

Kf=1….Nfiles

Kr=1…..Nrun

SIMULATE FIELD.M

SAVE
cavresults.mat , beamresults.mat

end

end

Complete run through
Nfiles x Nrun beam-
pulses. Lorentz-force
detuning is varied
randomly between
files; Cavity
microphonics are
varied from run to run.

Figure 1: Flow-chart for scream.m. The Loadinput, Prerun and Simulatefield modules are
discussed in further sections of this document.

 S.C.R.E.A.M – program documentation

 4-3

Only in the case of debugging=0 (or>3) is the program fully
executed. The full execution consists of two loops over the Nfiles and
Nruns RF pulses. The Cavities structure is redefined in this case as
SimCav to allow for a redefinition of the KLorentz vector. With every
cycle through the outer (Nfiles) loop the KLorentz vector is redefined
with Eq. (4-1). This implementation was chosen to take into account
the fact that the individual cavity Lorentz-force detuning constants
should be invariable once the accelerator is built. In that sense
different Nfiles describe different accelerators (with the same layout).
Note that the program assumes that the Lorentz-detuning factor,
which is usually given in Hz/(MV/m)2) was already divided by the
square of the cavity length in the input.

()
() ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆+= 21

MV
HzRkLKLKL jjoldjnewj ,, (4-1-a)

“New” and “old” in Eq. (4-1) refer to the KLj vector of the former cycle
(or KL0 as defined in Cavities in the case of the first cycle). Rj stands
for a vector of pseudo random numbers for cavity j produced with the
MATLAB randn function. These random numbers follow a (normalized)
Gaussian distribution around zero with variance 1. The frequency
change in each cavity due to fast (slow) microphonics is randomly
varied for each bunch (pulse) in the SimulateField.m routine, which
is called once every run to perform a simulation of an RF pulse. The
scream.m script also redefines the Lorentz-force pre-detuning that
was previously defined in the input on the basis of the KL0 detuning
constants given in the input (Cavities.Phase). This ensures that the
Lorentz-force pre-detuning is as precise as possible.

() ()HzradVcavKLKLLL jjnewjoldjnewj −−−∆=∆ 2
02 ,,,, πωω (4-1-b)

The results of the simulation of an the first bunch (debugging =2&3),

consisting of Nmpb macro-particles distributed over phase-space, are
contained in the cavpre and bmpre structures, which contain the main
parameters of the cavities and of the beam for all time steps in the
pulse as listed in Table 4-3 (see discussion of SimulateField.m for
further details). These fields can be very large and they are stored in
the preresults.mat MATLAB data file created by scream.m in the
datadirectory directory.

For a complete run the output structures are named cr (cavity-results)
and br (beam-results). They are organized into the beamresults.mat

 S.C.R.E.A.M – program documentation

 4-4

Table 4-3: S.C.R.E.A.M output parameters.

Parameter Comment units
Beam
Time arrival time (phase) of all macroparticles/bunch in each

cavity (pre-results) or in final cavity (final results)
sec

Energy energy (velocity) of all macroparticles/bunch in each
cavity (pre-results) or in final cavity (results)

MeV

Cavities
CField, SField accelerating voltage in cavity incl. phase (actual & set) MV
CForwd, SForwd amplified control signal for vector-sum control –

difference of set-voltage and actual voltage; (actual &
set, incl. feed-forward & feedback)

MV/Ω0.5

CDrive amplified control signal for vector-sum control including
phase-shifter – (incl. feed-forward & feedback)

MV

dw detuning of each cavity at each time step rad
CCur beam loading factor incl. phase (rel. to synchronous) A
ECur bunch final E fluctuation (rel. to synchronous) MeV
Phase shifters
CFwdpl forward attenuation/phase-shift in each phase-shifter /

time step (after feedback)
relative

CRvspl reflection from each phase-shifter / time step (after
feedback)

relative

sh1,sh2 phase shifter corrections for amplitude and phase rel/rad
ps1,ps2 amplitude and phase signal for phase-shifter PS ??? ?

PRERUN
debugging=1

(sync bunch)

PRERUN &
SIMULATEFIELD

debugging=2 or 3

(1 RF pulse incl. inj. Jitter
and cavity detuning)

FULL RUN
debugging=0 or >3

(NfilesxNruns RF pulses,
incl. injection Jitter and

variation in cavity
detuning (file-to-file, run-

to-run)

Prerun.Energy (NcavxNmpb)

Prerun.Time (NcavxNmpb)

Prerun.TTF (NcavxNmpb)

Prerun.dE (NcavxNmpb)

Prerun.dt (NcavxNmpb)

randstate (2x1)

Eoff/Toff/Ioff (1)
Efluc/Tfluc/Ifluc (Nb)

Time (NmpbxNb)

Energy (NmpbxNb)

CField (NcavxNs)

CDrive (NcavxNs)

CForwd (NmxNs)

CFwdpl (NcavxNs)

Rvspl(NcavxNs)

sh1 (NcavxNs)

sh2 (NcavxNs)

ps1 (NcavxNs)

ps2 (NcavxNs)

SField (NcavxNs)

SForwd (NmxNs)

CCur (NcavxNb)

ECur (NcavxNb)

w12 (Ncav)

dw (NcavxNs)

K (Ncav)

bmpre, cavpre

(preresults.mat)

br, cr

(beamresults.mat
cavresults.mat)

X Nruns

x Nfiles

X Nruns

x Nfiles

PRERUN
debugging=1

(sync bunch)

PRERUN &
SIMULATEFIELD

debugging=2 or 3

(1 RF pulse incl. inj. Jitter
and cavity detuning)

FULL RUN
debugging=0 or >3

(NfilesxNruns RF pulses,
incl. injection Jitter and

variation in cavity
detuning (file-to-file, run-

to-run)

Prerun.Energy (NcavxNmpb)

Prerun.Time (NcavxNmpb)

Prerun.TTF (NcavxNmpb)

Prerun.dE (NcavxNmpb)

Prerun.dt (NcavxNmpb)

randstate (2x1)

Eoff/Toff/Ioff (1)
Efluc/Tfluc/Ifluc (Nb)

Time (NmpbxNb)

Energy (NmpbxNb)

CField (NcavxNs)

CDrive (NcavxNs)

CForwd (NmxNs)

CFwdpl (NcavxNs)

Rvspl(NcavxNs)

sh1 (NcavxNs)

sh2 (NcavxNs)

ps1 (NcavxNs)

ps2 (NcavxNs)

SField (NcavxNs)

SForwd (NmxNs)

CCur (NcavxNb)

ECur (NcavxNb)

w12 (Ncav)

dw (NcavxNs)

K (Ncav)

bmpre, cavpre

(preresults.mat)

br, cr

(beamresults.mat
cavresults.mat)

X Nruns

x Nfiles

X Nruns

x Nfiles

Figure 4-2: Output structures for the different program options.

 S.C.R.E.A.M – program documentation

 4-5

and cavityresults.mat data files. MATLAB’s load command makes the
data available. They contain similar fields as those listed in Table 4-3.
The only difference is that each run and file is a separate matrix with
all NcavxNs/Downsample data (e.g. cr(10).CField is the cavity field
matrix (NcavxNs/Downsample) for the 10th run). The reduction in the
number of columns (or time steps) by the Downsample factor is
described further in the context of SimulateField.m. Fig. 4-2 also
shows the different output fields.

4.3 LoadInput.m

The LoadInput.m routine reads the input file linac.csv. It converts

the linac.csv input into the MATLAB structures Cavities, Phaseloop and
Bunches. In addition it produces a derived structure called Mod, which
contains relevant information on the modules (Table 4-4).
Loadinput.m also produces some additions to the General structure
(Table 4-5). Finally this script also modifies some of the existing input
data (such as converting phase from degrees to rad).

Table 4-4: Fields in the Mod structure-variable.

Field Comment unit
Cavities string with indices of cavities contained in module (Nm) -
N number of cavities per module (Nm) -
Feedback average feedback gain of all cavities in module (Nm) proportional
FillOff average fill delay of all cavities in module (Nm) µsec

Table 4-5: Additions to the General structure.

Field Comment unit
doPhaseloop =1 if Phaseloop exists (scalar) −

Fig. 4-3 shows a flow-diagram for Loadinput.m. The following

discusses the main steps of the routine.

After checking that the data directory name is defined (and setting it

to run0data if it is not defined) LoadInput.m opens linac.csv with the
fopen function. The input file is read line by line with the fgetl function.
When the ‘{‘ character, which signifies the beginning of a structure, is
detected, a more complicated line-by-line data transfer is initiated.
This line-by-line transfer consists in preparing the data (removing
quotes, comments and unnecessary commas) for the sscanf function,
which parses the strings from the tline variable to the temporary A
matrix. Once the string ‘}’ is detected, the data scanning is terminated
and the data are parsed into a structure variable named Varname,

 S.C.R.E.A.M – program documentation

 4-6

LOADINPUT.M

OPEN INPUT FILE READ NEXT LINE in INPUT

DETECT ‘{‘ ? READ VARIABLE-NAME

READ FIELD-NAMES COUNT FIELD-NAMES

WHILE (until ‘}’ detected)

READ IN DATA STRING
LINE-BY-LINE - TRANSFER
INTO TEMPORARY MATRIX

Creation of Comma Vector

CREATE STRUCTURES
from VARIABLE-

NAMES, FIELD-NAMES
& DATA

CLOSE INPUT FILE CREATE MOD STRUCTURE

N

}

LOADINPUT.M

OPEN INPUT FILE READ NEXT LINE in INPUT

DETECT ‘{‘ ? READ VARIABLE-NAME

READ FIELD-NAMES COUNT FIELD-NAMES

WHILE (until ‘}’ detected)

READ IN DATA STRING
LINE-BY-LINE - TRANSFER
INTO TEMPORARY MATRIX

Creation of Comma Vector

CREATE STRUCTURES
from VARIABLE-

NAMES, FIELD-NAMES
& DATA

CLOSE INPUT FILE CREATE MOD STRUCTURE

N

}

Figure 4-3: Flow-chart for LoadInput.m.

which contains the data in the respective sub-arrays Fieldnames. This
process is repeated for as many times as there are “{“ (three in our
case).

LoadInput.m also prepares some additional structure variables from

the input. These are the Mod and additions to the General structure.
The Mod structure contains information about the number of cavities
per module (and their indices), the average feedback gain and fill-off
settings of all cavities in each module. The addition to the General
structure consists in defining the scalar doPhaseloop variable, which is
1(0) if the Phaseloop structure is (not) defined in the input. The
LoadInput.m file also defines the Lorentz-detuning constant KL (-1
Hz/(MV)2), Lorentz-detuning ∆kL (0.1, relative to K) if they are not
defined in Cavities. Note that the program assumes that the Lorentz-
detuning factor, which is usually given in Hz/(MV/m)2) was already
divided by the square of the cavity length in the input. The
Cavities.Atten field is created, with the default values 1. This field is
not used anymore (historical artifact). LoadInput.m converts the
phase advance setting in Cavities.Phase from degrees to rad. Finally
LoadInput.m recalculates the Cavities.Feedback vector, dividing the
gain factor given in the input by the number of cavities in each module
and re-assigning it to each cavity accordingly.

 S.C.R.E.A.M – program documentation

 4-7

4.4 Prerun.m

The Prerun.m routine simulates the passage of a pilot-particle and a

pilot bunch consisting of Nmpb macro-particles through the linac. It
essentially serves as a debugging tool. It also calculates the footprint
of the synchronous particle in E/t phase-space. Fig. 4-4 gives a flow-
chart for Prerun.m. Table 4-6 lists the output arrays.

 Table 4-6: The output arrays of the Prerun.m routine are grouped into the Prerun structure. The
fields within the structure are listed in the table.

Array Comment
Prerun.Energy energy of all mps in synchronous bunch along linac (NcavxNmpb)
Prerun.Time arrival time of all mps in synchronous bunch along linac (NcavxNmpb)
Prerun.TTF norm. trans-time-fact. of all mps in sync. bunch in all cavities (NcavxNmpb)
Prerun.dE difference betw. mp energy and sync. energy in all cavities (NcavxNmpb)
Prerun.dt difference betw. mp arrival time and sync. time in all cavities (NcavxNmpb)

PRERUN.M

ACCELERATION.CPilot

Start Energy

Start Time

Mass

Charge

Vacc = T’ x Vcav x cosφ0

no detuning

no feed-back

Pilot =
synchronous

particle

Arrival time at each cavity

energy-gain in each cavity

TTF in each cavity

ACCELERATION.CBunches

Bunches=

synchronous bunch
(Nmpb macro-particles

distributed around
synchr. particle)

Difference in arrival time
of each macro-particle to
the synchronous particle

at each cavity

Difference in energy of
each macro-particle to the
synchronous particle after

each cavity

Arrival time at each cavity

energy-gain in each cavity

TTF in each cavity

Cavities

Prerun

PRERUN.M

ACCELERATION.CPilot

Start Energy

Start Time

Mass

Charge

Vacc = T’ x Vcav x cosφ0

no detuning

no feed-back

Pilot =
synchronous

particle

Arrival time at each cavity

energy-gain in each cavity

TTF in each cavity

ACCELERATION.CBunches

Bunches=

synchronous bunch
(Nmpb macro-particles

distributed around
synchr. particle)

Difference in arrival time
of each macro-particle to
the synchronous particle

at each cavity

Difference in energy of
each macro-particle to the
synchronous particle after

each cavity

Arrival time at each cavity

energy-gain in each cavity

TTF in each cavity

Cavities

Prerun

Figure 4-4: Flow-chart for Prerun.m.

Prerun.m first creates the structure variable Pilot, which contains

several scalar fields, such as Energy (starting energy Eini0), Time (the
arrival time of the pilot particle in the first cavity tini0, here
automatically set to zero), Mass (938 MeV for protons), Charge (in
units of the elementary charge), N (=1) and I (=1). The current is
irrelevant for the tracking of the synchronous particle since no beam-

 S.C.R.E.A.M – program documentation

 4-8

loading is taken into account. The Pilot fields are for the most part
initialized with the first line of the input structure variable Bunches.

Following the initialization of Pilot, Prerun.m calls acceleration.c,

which simulates a run of the pilot particle through the linac. The
variables of acceleration.c, however, are such that only one macro-
particle with the above characteristics (Pilot), which is at the
synchronous phase in all cavities, is assumed (instead of Bunches,
Pilot is passed on in the function call). Also, the fields in the cavities
are assumed to be the nominal design fields (Cavities.Amplitude is
passed on in the function call). Since the pre-set beam phase-advance
is taken into account in the calculation the pilot particle is, strictly
speaking, not at the synchronous phase. For the purpose of all
following calculations, however, this will be the reference (or
“synchronous”) phase since the beam phase advance is always
applied. Acceleration.c returns the structure variable ar, which
contains the Time, Energy and TTF arrays. All three arrays have Ncav
(number of cavities) lines and Nmpb (number of macro-particles)
columns. Since Nmpb=1 for Pilot, they are vectors in this case. The
time vector contains the arrival times of the pilot particle at the center
of each cavity. The energy vector contains the energy of the pilot
particle at the end of each cavity. The TTF vector contains the transit-
time factor for the synchronous particle in each cavity. Prerun.m then
uses the arrival time vector ar.Time to overwrite the Cavities.Time
vector with the arrival times of the synchronous (or reference) particle
as needed in subsequent sections of the program.

The second part of PreRun.m includes a simulation of an entire

bunch with acceleration.c. The input to acceleration.c is such that
only one bunch consisting of Nmpb macro-particles is accelerated. This
bunch uses macro-particles distributed in E/t space such as prescribed
in Bunches, but does not vary the bunch-center position from
Eini0/tini0. It is therefore a synchronous bunch. The cavity amplitudes
are again set to their nominal values, i.e. no beam-loading or detuning
phenomena are taken into account (SimulateField.m is not called).
As before the beam phase-advance is taken into account. The output
of this second part of PreRun.m consists of the prerun arrays:
Energy, Time, TTF, dt and dE. These are matrices containing the
calculated quantities of the same name as a function of cavity (rows)
and macro-particle (column). The first three are similar to those in ar,
but they contain the Ej,k ,tj,k ,T’j,k information for each macro-particle in
the synchronous bunch. In the first column is the information about
the first and thus synchronous macro-particle. The arrays dt and de
are derived NcavxNmpb arrays, which contain information about the

 S.C.R.E.A.M – program documentation

 4-9

arrival time difference and energy difference in each cavity of each
macro-particle (in the synchronous bunch) to the synchronous particle.

4.5 acceleration.c

Acceleration.c tracks the macro-particles through the linac, i.e. it
calculates sequentially the arrival time of the particle in each cavity. To
obtain the arrival time in each cavity, acceleration.c needs to
calculate the effective acceleration of each particle in every cavity. This
calculation uses the transit-time factor (T’), the phase difference of the
particle with respect to the synchronous particle (∆φ) and the total,
complex accelerating voltage (V

)
) in each cavity as provided in the

function call. In the program SimulateField.m the cavity field
calculation, taking into account beam-loading, detuning and vector-
sum as well as vector-modulator feedback, is performed and passed
on to acceleration.c for tracking. Acceleration.c also uses the

Table 4-7: The output arrays of the acceleration.c routine are grouped into the ar structure. The
fields within the structure are listed in the table.

Array Comment
ar.Energy energy of all macro-particles along linac (NcavxNmpb)
ar.Time arrival time of all macro-particles along linac (NcavxNmpb)
ar.TTF normalized transit-time-factor of all mps in all cavities (NcavxNmpb)

ACCELERATION.C

Arrival time of
synchronous

particle (Prerun)

includes φ0

RF phase offset in
cavity (Input)

∆φ

TTF

Loop over all
cavities

Loop over all
macroparticles

INPUT MATLAB C

Energy gain
in cavity

Arrival time, energy and TTF
of each mp in every cavity

(complex)
acc. voltage

in each
cavity

Arrival time of particle
(time of flight)

SimulateField.m

ACCELERATION.C

Arrival time of
synchronous

particle (Prerun)

includes φ0

RF phase offset in
cavity (Input)

∆φ

TTF

Loop over all
cavities

Loop over all
macroparticles

INPUT MATLAB CINPUT MATLAB C

Energy gain
in cavity

Arrival time, energy and TTF
of each mp in every cavity

(complex)
acc. voltage

in each
cavity

Arrival time of particle
(time of flight)

SimulateField.m

Figure 4-5: Flowchart of acceleration.c.

 S.C.R.E.A.M – program documentation

 4-10

Cavities and Bunches structure as input parameters. Finally it also
uses the Energy, Time and TTF vectors, calculated by Prerun.m, for
the respective parameters of the synchronous particle. The output of
acceleration.c consists of the NcavxNmpb vectors Time, Energy and
TTF. They are summarized in Table 4-7. Fig. 4-5 shows the flowchart
schematic for this subroutine. For faster computation acceleration.c
is written in C-code. The acceleration.c routine can be compiled with
the MATLAB mex command (producing acceleration.dll). In the
Windows based program version #include <math.h> needed to be
added in the file header.

The first part of the program defines C-arrays, which read in the

required input parameters from the MATLAB variables produced by
LoadInput.m. Most of these parameters are from the Cavities input
field: -1- the position of the center of each cavity along the linac
(Position), -2- the so-called Time vector (see discussion in section 4-
4), -3- the cavity frequency (Frequency), -4- the phase-advance in
each cavity (Phase), -5- the cavity βc (Beta), -6- the ratio of cell
length and RF wave-length (GapLambda), -7- the number of cells per
cavity (Cells), -8- the multi-cell mode in which each cavity is operated
(e.g. π-mode), -9- the energy (as calculated in the input for the
synchronous particle), and, -10- the particle mass, -11- the particle
charge and –12- the number of bunches.

Acceleration.c calculates the arrival time, taj,k, of each macro-

particle k in each cavity j from the arrival time in the preceding cavity
and the time of flight from the preceding cavity at the velocity given
by the particle βb in the preceding cavity. The distances between two
neighboring cavities are always measured from center-to-center. The
center positions of the cavities are as provided in the input. The initial
parameters Einik and tinik vary with each macro-particle k and are
provided by the input (E0k, t0k) and SimulateField.m (coherent and
incoherent fluctuations). Eq (4-2) calculates the arrival time for a
single macro-particle k in each cavity j.

()sec
,

,, cb

zz
tata

kj

j

n
njj

n
knkj

1

1

0
1

0 −

−

=
−

=

∑
∑

−
+=

β
 (4-2)

The particle velocity βb is calculated from the particle energy with:

2

11
γ

β −=b ⎟
⎠
⎞

⎜
⎝
⎛ += 21

mc
Eγ ,

 S.C.R.E.A.M – program documentation

 4-11

where E is the kinetic energy of the macro-particle of given charge (q)
and mass (m) contained in each macro-particle. Note that for the
purpose of the calculation of the beam acceleration the exact number
of single particles contained in a macro-particle is irrelevant.
Acceleration.c therefore treats macro-particles as single particles
(q=Bunches.Charge=charge of single particle, m=Bunches.Mass=mass
of single particle in MeV). The kinetic energy of the macro-particle Ej,k
is calculated iteratively through the linac from the energy gain in each
cavity j. The energy gain per cavity is calculated from the transit-time
factor T’j,k, the total cavity voltage jV

)
 (in MV) and the phase difference

to the synchronous particle ∆φk,j according to Eq. (4-3). Note that there
is a distinct difference between the phase difference between the
beam and the synchronous phase (∆φk,j) and the phase factor in the
cavity field (φc=arctanℑV/ℜV), which is the result of a mismatch
between RF power supply and the (detuned) cavity resonance
frequencies. The later is taken into account in the amplitude and phase
of the accelerating voltage. The effective (real) acceleration, given the
phase of the cavity field eiφc and the beam phase eiφb, is the real part of
Vei(φc+ φb), which is Vcos(φc)cos(φb)-Vsin(φc)sin(φb). Vcos(φc) and
Vsin(φc) are obviously the real and imaginary parts of the complex
cavity accelerating voltage V

)
.

()

() () ()[]kjjkjjkjjkjkj

j

u
kukkj

VVbcqTE

MeVEEE

,,,,,

,,

sinImcosRe,' φφββ ∆−∆=∆

∆+=

−

=
∑

))
1

1
0

 (4-3)

Note that V

)
 includes the effects of beam-loading and cavity detuning

(and the respective corrective actions by vector-sum control and fast
vector-modulator feedback).

The field amplitudes in the cavities are calculated by the
SimulateField.m sub-routine, which includes the simulation of beam-
loading, detuning and feedback. The phase-difference between the
particle k in cavity j, ∆φj,k and the RF synchronous phase is calculated
with:

() ()radtatsyncRFtaRF kjjjjkjjjkj ,,, −−=∆−=∆ ϖφωφφ 00 , (4-4)

where tsyncj is the arrival time of the synchronous (or reference)
particle in the center of cavity j, as calculated with acceleration.c
during the first call by the Prerun.m routine (using the Pilot particle).

 S.C.R.E.A.M – program documentation

 4-12

Note that tsync already includes the beam phase advance φ0, as read
from the input (Cavities.Phase). The tsync vector is called BeamTime
in acceleration.c (which is the new name of the Cavities.Time vector
after the processing by acceleration.c). Before the simulation of the
pilot particle, the BeamTime vector components are usually all (-1), as
defined in the input file.

Note that the phase-mismatch (ωRF(tsync-ta)) of the particle in each

cavity is not computed with respect to some absolute phase, but to the
phase of the synchronous particle! This therefore assumes that the
designer of the linac has already defined the RF phase-settings for all
cavities that satisfy the basic time of flight delays between cavities of
the synchronous particle. These constant phase-settings are obtained
using module-to-module delays in the modulator pulse, variations in
the length of wave-guide between klystron and individual cavities and
three-stub mechanical tuner settings for the fine tuning of the forward
power to individual cavities.

The transit time factor of the cavity, T’j,k used in Eq. (4-3), describes

the effect of the beta-mismatch between beam and cavity on the
effective acceleration voltage. In multi-cell cavities the transit time
factor is dominated by cell-to-cell effects. The particular transit time
factor implementation used here (Eq. (4-5)), referred to as T’, is
slightly different from that commonly used in literature. It is
normalized such that its maximum is 1 rather than 0.5. In this way the
product ReV

)
T’ gives the effective accelerating voltage for the

synchronous particle, independently of the particular longitudinal field
profile of the cavity. (Strictly speaking, however, the transit time
factor T given above only applies to the case of cavities with a more or
less sinusoidal axial field profile, such as for instance in elliptical
cavities, operated in the π mode). The transit time factor given below
applies to a multi-cell cavity (Nc is the number of cells), where each
cell is Lc long. The first term describes the single cell effects. The
second term describes the cell-to-cell effects. The nominator in the
first term was developed into a Taylor-series to prevent a singularity in
the calculation. The second term also has a singularity at βc=βb, but
this appears to be without consequences (probably because it is
unlikely that βc=βb, both having a huge number of digits). A complete
derivation of the transit-time-factor can be found in appendix A.

 S.C.R.E.A.M – program documentation

 4-13

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

==

b

c
c

b

cc

b

c

b

c

b

c

N

N

TT

β
βπ

β
βπ

β
β

β
βπ

β
βπ

1
2

sin

1
2

sin

1

1
1920

1
24

1

22'

4422

 (4-5)

The passage of the macro-particles through the linac is simulated in

two for-loops. The outer loop is over the macro-particles (nbunch as
running index, which is an unfortunate choice as name) such as
ordered in Cavities.Bunches. The inner loop is over the cavities (ncav).
This inner loop calculates (and stores) the actual energy of the macro-
particle and their arrival time sequentially, cavity-by-cavity.

4.6 SimulateField.m

SimulateField.m calculates the cavity fields as a function of time,

including beam loading, detuning and feedback for all bunches (and all
its macro-particles) contained in one RF (macro-) pulse. Feedback
loops using vector-sum regulation at the RF module level as well as
individual cavity vector-modulators are simulated. This simulation
obviously also includes the feed-forward settings used to pre-
compensate for detuning and beam loading. The calculation of the
cavity detuning as a result of Lorentz-forces and microphonics (fast
and slow) including the feed-forward, is in part provided by the
separate detuning.m routine, which is discussed later. The effect of
the vector-modulator is also modeled separately in the
dophaseloop.m script, which is called by SimulateField.m.
SimulateField.m uses the acceleration.c routine for the calculation
of the beam acceleration, since the phase and energy of the macro-
particles also affect beam-loading. Finally it also uses the special
dimsum.c routine as part of the simulation of the vector-sum
feedback.

SimulateField.m receives the Cavities, Bunches and General input

arrays as read from the input file with the Loadinput.m routine. It
also uses the Time and Energy vectors for the synchronous particles,
as provided by Prerun.m. In addition it uses the Mod structure,
provided by Loadinput.m, which contains information on each RF
module as it is relevant for the RF phase and amplitude regulation at
the klystron/module level (vector-sum control). The information
contained in the Phaseloop array is needed for the control of the

 S.C.R.E.A.M – program documentation

 4-14

feedback at the cavity level using vector-modulators. At this point,
however, most of the Phaseloop fields are not used (with the only
exception of the regulator gains) and most parameters of the feedback
loops are hard-coded into the program. The use of Phaseloop will allow
for individual adjustment of the phase-shifter feedback circuits (gains,
initial set values, saturations, delays, time constants,..etc).

The output of SimulateField.m consists of the cr (cavity-results)

and br (beam-results) files, which contain the information on the fields
in the cavities and the longitudinal bunch dynamics. The program
makes a difference between the first and the subsequent runs. The
first run is stored in the preresults.mat datafile (created automatically
by the program in datadirectory). The subsequent runs are stored in
the cavresults.mat and beamresults.mat files. The beam-result
structure, br, consists of the (final) Energy, (arrival) Time and I
arrays, which have as many rows as there are macro-particles and as
many columns as bunches/time-steps (with beam on). One of each of
these structures is stored for each run (pulse). Also stored are the
coherent (scalar) and incoherent (vector, with an element for each
bunch) Eini,tini,Iini contributions. These structures are initialized with
the respective values in the Bunches field from the input file.

The main field in the cavity-result structure, cr, is CField, which

contains the cavity accelerating voltages for every bunch. The
amplitude and phase changes as a result of detuning and beam-
loading are also included. Since the number is complex the phase
information is contained in the phase of the complex number:

Amplitude(MV)=abs(CField), Phase(deg)=180/pi*angle(CField)

The CForwd field contains the feedback voltage correction signal in

(MW)0.5 (incl. feed-forward) after vectorsum control. More precisely
CForwd is the amplified difference between the set voltage and the
actual voltage plus the feed-forward component SForwd. It is therefore
the vector-sum control signal and proportional to the voltage that the
feedback system tries to impose in the cavity. Squared it gives the
beam-power that is demanded from the klystron to bring the field to
the desired level. Note that the program, unlike the real case, does not
pre-compensate for the reflection and attenuation of the forward
power as a result of detuning and coupling loss. These effects (as
discussed in appendix B) reduce the actual power the cavity receives.
Since the program includes a strong feedback component, these losses
will be made up by an increased demand in power during the next
time step. Since the vector-sum feedback is performed at the module

 S.C.R.E.A.M – program documentation

 4-15

level, the CForwd array has the dimension NmxNs, Note that CForwdl,i
is instantaneous, for each time step i (i.e. it is not integrated!). This
implies that the RF power source can follow instantaneously to load
changes.

The CDrive field is the amplified difference between the set voltage
and the actual voltage plus the feed-forward component SForwd as
well as the phase-shift and attenuation provided by the phase-shifter,
already converted to MV. In the current implementation it also takes
into account multiple power reflection between the cavity and the
phase-shifter. CDrive therefore is the feedback control signal after the
vector-modulator in MV. The CDrive array has dimension NcavxNs
(although not all cavities might have vector-modulators, in which case
the phase-shifter effect is 1). Note that all these fields are complex,
with the real part containing the amplitude information and the
imaginary part holding the phase information. The cavity reference
phase is zero, therefore all phase errors are with respect to zero and
the feedback/feed-forward systems therefore aim at restoring zero
phase. In a real machine, of course, the cavity reference phase would
include the synchronous phase, cable delays,..etc.

CFwdpl holds the actual forward signal supplied by the fast ferrite

vector-modulators (complex, i.e. amplitude, relative to 1, and phase in
rad). Since the set-point phase of the phase-shifters is usually not
zero, amplitude signals >1 are possible. Rvspl contains the reflection
signal from the vector-modulators (relative to 1).

Sh1 and sh2 contain the phase correction signals (rad) provided by

the two branches of the phase-shifters.

Ps1 and ps2 provide the phase-shifter power supply signals (they are

presently not used!) as determined by the program.

The remaining output arrays are w12 (cavity bandwidth) and dw

(total cavity detuning phase) as well as K (Lorentzforce detuning
constant for each cavity). These can be useful to calculate parameters
related to the detuning. The detuning is obviously also an important
output parameter. These arrays are listed in Table 4-8 and 4-9. Fig. 4-
6 shows a flow-schematic for SimulateField.m. After the first run
(debugging=2 or 3) the resulting structures are called bmpre and
cavpre.

 S.C.R.E.A.M – program documentation

 4-16

Table 4-8: The arrays of the beam-results structure (br).

Array Comment units
randstate state of MATLAB randn function (2 scal) -
Eoff initial sigma E offset of bunch centroid – coherent part (scal) MeV
Toff starting time offset of bunch centroid - coherent part (scal) sec
Ioff variation bunch current - coherent part (scal) A
Efluc initial sigma E offset of bunch centroid – incoherent part (Nb) MeV
Tfluc starting time offset of bunch centroid - incoherent part (Nb) sec
Ifluc variation bunch current - coherent part (Nb) A
Energy final energy of macro-particles for all bunches (NmpbxNb) MeV
Time arrival time at last cavity of mp for all bunches (NmpbxNb) sec

Table 4-9: The arrays of the cavity-results structure (cr).

Array Comment units
CField actual, complex accelerating voltage in each cavity at each

time step (NcavxNs)
MV

CForwd instantaneous, amplified difference signal between set-
voltage and actual voltage (vector-sum control signal)
(NmxNs), gives klystron power when squared

MV/Ω0.5

CDrive incremental, forward voltage supplied for each cavity at
each time step (NmxNs)

MV

CFwdpl actual, complex forward signal (complex) from vector-
modulators at each time step (NcavxNs)

rel. (rad)

Rvspl actual, complex reflection from vector-modulator (NcavxNs) rel
SField set-point (real) accelerating voltage in each cavity at each

time step (NcavxNs)
MV

SForwd incremental, complex feed-forward set-point forward power
to each cavity at each time step (NmxNs)

MV/(Ω0.5)

sh1 actual phase-shifter amplitude correction (NcavxNs) rel.
sh2 actual phase-shifter phase correction (NcavxNs) rad
ps1 actual phase-shifter PS signal for amplitude correction

(NcavxNs)
?

ps2 actual phase-shifter PS signal for phase correction
(NcavxNs)

?

CCur actual, complex beam-loading factor (NcavxNs) A
ECur actual, average difference of bunch energy to synchronous

particle (NcavxNs)
MeV

w12 cavity bandwidth, HWHM (=πfRF/QL) (Ncav) rad-Hz
dw actual, total cavity frequ. shift due to Lorentzforce and

microphonics detuning and feed-forward (NcavxNs)
rad-Hz

K Lorentz-force detuning constant for each cavity, fixed for
entire pulse (Ncav)

Hz/(MV)2

 S.C.R.E.A.M – program documentation

 4-17

SimulateField.m

acceleration.c
br. Energy
br. time

for all mps

cavity fields
& forward power

Loop over all
time-steps

∆ω

Eini,tini,Iini-coh

slow microphon

cr (V, Pf,∆ω,..)

br (E,t)

array-initialization fill-curve

Loop over all
cavities

VecΣ-feedback

detuning

Eini,tini,Iini incoh

fast microphonics

phaseshifter

SimulateField.m

acceleration.c
br. Energy
br. time

for all mps

cavity fields
& forward power

Loop over all
time-steps

∆ω

Eini,tini,Iini-coh

slow microphon

cr (V, Pf,∆ω,..)

br (E,t)

array-initializationarray-initialization fill-curve

Loop over all
cavities

VecΣ-feedback

detuning

Eini,tini,Iini incoh

fast microphonics

phaseshifter

Figure 4-6: Flow diagram for SimulateField routine.

Injection Jitter

The starting-energy, starting-time and current (“0”) of the macro-
particles for the synchronous bunch (i.e. the bunch with a synchronous
centroid) are defined in the Bunches field in the input (see discussion
in 3.5). In addition, the bunch centroid is shifted randomly to simulate
beam jitter at injection. There are coherent (“coh”, pulse-to-pulse) and
incoherent (“fluc”, bunch-to-bunch) contributions to the injection
energy, time and bunch-current jitter. The coherent contribution is
added at the start of SimulateField.m. The incoherent contribution is
added within the loop over the bunches (=time-steps with beam on)
within a pulse. The coherent and incoherent contributions are
calculated through multiplication of the MATLAB randn function1, which
produces a (pseudo) random number from a normal distribution
around zero (variance 1), with the respective fluctuation sigma from
the input field General. The centroid position in longitudinal phase-
space at the end of one pulse (after iteration through as many
bunches as there are “beam-on” time steps within a pulse) becomes
the initial value for the next pulse. Depending on the number of

1 The two implementations used in SimulateField.m are randn and randn(Nbeam,1). The former produces a
random number and is used for the coherent contribution. The latter produces a vector with Nbeam random
numbers and is used for the incoherent fluctuation. Nbeam is the number of time-steps during beam-on
time and thus the number of bunches in a pulse. The sequence of numbers generated is determined by the
state of the generator. Since MATLAB resets the state at start-up, the sequence of numbers generated will
be the same unless the state is changed.

 S.C.R.E.A.M – program documentation

 4-18

tini

Eini

tini

Eini

tini

Eini

Ek=E0k

tk=t0k

Ek=E0k + σEcoh x R

tk=t0k + σtcoh x R tk=t0k + σtcoh x R+ σtfluc x R

mp

Ek=E0k + σEcoh x R+ σEfluc x R

Esync=Eini0
tsync=tini0

tini

Eini

tini

Eini

tini

Eini

Ek=E0k

tk=t0k

Ek=E0k + σEcoh x R

tk=t0k + σtcoh x R tk=t0k + σtcoh x R+ σtfluc x R

mp

Ek=E0k + σEcoh x R+ σEfluc x R

Esync=Eini0
tsync=tini0

Figure 4-7: The different levels of variations of the macroparticle (k) position in longitudinal phase-
space.

arguments the randn function will return different results. The initial
state of randn at the start of SimulateField.m is stored in the
br.randstate variable from where it can be retrieved to recalculate a
particular case. In that case, the randstate variable needs to be added
as a fifth input variable to the call of SimulateField.m. Therefore
SimulateField.m first checks for this fifth variable and uses it to set
the state in the randn function. The randn(‘state’) is a two element
vector. Fig. 4-7 illustrates the different steps for the definition of the
beam longitudinal phase-space jitter at injection.

Eq. (4-6) gives the complete formula for the start value settings of

the mps in longitudinal phase space. The bunch-to-bunch variation of
the incoherent contribution is symbolized in Eq. (4-6) by the index i.

()MeVNbiREflucREcohEEini ikik ,..,..., 10 =×+×+= σσ (4-6a)

()sec,..,..., NbiRtflucRtcohttini ikik 10 =×+×+= σσ (4-6b)

() ()ANbiRIflucRIcohIIini ikik ,..,...%(%)

, 1
100

1
100

10 =×+⎟
⎠
⎞

⎜
⎝
⎛ ×+=

σσ
 (4-6c)

E0k, t0k and I0k values are those defined in the input (Bunches).

They obviously also include the Eini0 and tini0 offset of the
synchronous particle.

 S.C.R.E.A.M – program documentation

 4-19

Array Initialization

Simulatefield.m then proceeds to initialize the main calculation and

output arrays in the beamresults, br(NmpbxNb), and cavresults,
cr(Ncav or Nm x Ns), structures. These arrays are usually matrices
with a row for each macro-particle / cavity (or module) and a column
for each bunch / time-step. While in the case of the cavity parameters
the data for each time step are stored, the number of time steps is
limited to those during which there is beam in the case of the beam
parameters. These arrays are listed in Table 4-8 and Table 4-9.

After array initialization, SimulateField.m prepares some

parameters, which can be computed outside the time-loop. Among
them is the cavity bandwidth ω12 (=πfRF/QL). Others are the cavity
filling, the cavity detuning due to slow microphonics and the set-value
for the RF power supplied to the cavity during filling and beam.

Filling Curve

The function describing the filling of each cavity uses a universal fill-

curve, which depends only on the fill-time tfj (and fill-time delay tfoj)
of each cavity j as defined in the input. As discussed in chapter 3 the
individual fill-time of each cavity is determined from tfj-tfoj. The
universal fill-function, v(t), is relative to a cavity amplitude of 1 (a.u.).
It is then multiplied with the nominal voltage Vcavj in each cavity to
obtain the set-values of the cavity voltages SFieldj. Eq. (4-7) gives
vj(t), as it is calculated separately for every cavity j.

ji

jij

ji
tfotf
tfot

ij

tft
tfttfo

tfot
ev jj

ji

>
<<

<

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
−

1

12

0
2ln

, (4-7-old)

 S.C.R.E.A.M – program documentation

 4-20

Fill Curve for Cavities - FillOff=200, Fill=500, Tau=250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

of time steps

R
el

at
iv

e
am

pl
itu

de Fill (new) FillTaylor=0
Fill (new) FillTaylor=0.2
Fill (new) FillTaylor=0.4
Fill (new) FillTaylor=0.6
Fill (new) FillTaylor=0.8
Fill (new) FillTaylor=1
Fill (new) FillTaylor=2
Fill (old)

Figure 4-8: Cavity fill-curve for a tfill=500 and a tfill-off=200.

Also shown in Fig. 4-8 is a different filling function, which is used in

the latest implementation of the program (“New filling function”). This
new function includes the FillTaylor parameter, which allows varying
the fill-function shape from linear (FTayl=1) to exponential (FTayl≠1).
Since the FTayl factor is given in the input for every cavity, cavity-to-
cavity variations of the filling function can be implemented. Nfilloff is the
number of time steps during the fill-off delay.

() ()[][]

j

j
jj

jjj
ji

i

ij

ji
n

jNfilloffij
n

j
ij

f
tfotf

nfnf
f
i

ff
n

tft
tfttfo

tfot
enFTayle

nf
v jNfilloffijNfilloffi

ττττ
−

=∈=

>
<<

<

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−+−= −− −
−

−

),~,(,...,..,,,,

,,
,,

10210

1

111
0

 (4-7-new)

 S.C.R.E.A.M – program documentation

 4-21

Forward Power Feed-Forward

The forward power to the module l allows setting or maintaining the

field Vcavj during the filling and beam loading. In the notation used
here, the feed-forward signal, Sfwd, has the unit square root of power.
Eq. (4-8) gives the forward voltage feed-forward defined in
SimulateField.m. The program applies the same philosophy as was
applied to TTF, which is that of adaptive feedback, i.e. the feed-
forward is chosen such as to minimize the feedback needed. Note that
the index l indicates the average of all cavities j in the module l. This
averaging is needed since the forward power supplied by the klystron
is the same for all cavities in a module. Also note that the forward
signal is obviously proportional to the forward power delivered by the
klystron. It is also proportional to the accelerating voltage the cavity
will deliver as it receives the forward power from the klystron.

As typical for the strongly over-coupled cases, which seek to obtain

the matched cavity impedance with beam, the cavity is not matched
during filling. In the strongly over-coupled condition the coupling
losses strongly dominate the wall losses in the cavity: RL~Rext~rQL.
The drive signal is typically two times the nominal accelerating voltage
because of the strong reflection in the unmatched case (see appendix
B for further explanation). Here it was reduced to 50% of the nominal
voltage because the vector-sum feedback was found to be strong
enough to regulate the voltage during filling. During beam-loading the
cavity is matched and the forward voltage goes through to the cavity
unimpeded. In this case the default forward power drive signal is
chosen such as to compensate roughly for the expected voltage drop
in the cavity due to beam-loading. In TTF the drive signal at flat-top is
typically ~25% of the nominal voltage. Here the expected beam-
loading is calculated directly, including the beam phase advance as the
expected difference between the beam and the klystron phase. The
feed-forward phase factor therefore neglects the phase variations
caused by variations in the acceleration history of the bunch. This
approach is good enough to first order, given that the variations from
the phase advance offset are usually kept to the <5° level (with the
help of the vector-sum regulation, and in some cases, the phase-
shifters). The formula describing the beam-loading is discussed in
further detail later.

Eq. (4-8) gives the instantaneous feed-forward signal to the cavities.

It suffices to note that in Eq. (4-8), the 10-6 factor serves to scale the
voltage to MV, while the (1-exp(-ω12∆t)) factor can be understood
when inserting Sfwd0 into Eqs. (4-13) & (4-14). It is essentially a

 S.C.R.E.A.M – program documentation

 4-22

factor, which will cancel out such as to compensate exactly the voltage
drop due to beam-loading (such that ijij VV ,,

))
=+1) THAT IS NOT TRUE

(CHECK!!). In fact it anticipates the coupling loss in the cavity.
Coupling loss is discussed in further detail in appendix B. It is
important to note that the forward drive signal is instantaneous. Sfwd0
is the initial matrix of the forward signal field referred to as SForwd in
the program.

()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Ω

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

>
−

∆

<

<

==

∆−

−−

MV

tft
rQLe

teRFIbr

tft
rQL

Vcav
tfot

PfwdSfwd

i
ll

t

i
lil

i
ll

l

li

ilil

l

l

21
10

22

0

00

12

60

ω

φω

,,

 (4-8)

SForwdj,i(MV/(Ω)1/2)=Sfwd0j,i

The program includes the so-called conversion factor rQLRL 22 ≈

to convert the drive signal into the square root of the forward power.
Note that the drive signal should not only be squared, but also
multiplied with 1012 to obtain the result in Watt, since the voltages are
in MV. As will be explained later the forward signal is converted into a
forward voltage increment (CDrive) before adding it to the actual
cavity field (CField). CDrive, however, also includes the contributions
of vector-sum and vector-modulator feedbacks, attenuations, feedback
gains, ...etc.

Cavity Detuning

As discussed in further detail in appendix B, cavity detuning strongly

increases the amount of power reflected from the cavity.
Superconducting cavities, with their narrow bandwidth
(ω12<1kHz,HWHM), are strongly affected by detuning. The cavity
bandwidth, ω12, can be calculated with Eq. (4-9).

)(Hzrad
QL
fRF

j

j
J −= πω12 (4-9)

 S.C.R.E.A.M – program documentation

 4-23

When the cavity is detuned from the RF drive signal by ∆ω, the
ensuing phase-shift is arctan(∆ω/ω12). When ∆ω= ω12 the phase-shift is
45°. The voltage amplitude is also reduced by reflection as a result of
the frequency mis-match (at ∆ω= ω12 the voltage drops by a factor2).

Although detuning is a dynamic event resulting from mechanical
excitation of the cavity, feed-forward correction can be applied to
some extent. The Lorentz-force detuning, for instance, can be
approximately anticipated, pre-detuning the cavity to some positive ∆ω
that will then compensate the Lorentz-force detuning at nominal field
after filling. In TTF a Piezo tuner was successfully used to compensate
the detuning using a feed-forward function. SimulateField.m applies
the fixed pre-detuning approach. Such pre-detuning can be obtained
by mechanically deforming the cavity. The pre-detuning approach
results in a strongly detuned cavity at the beginning of the filling
process, with the detuning gradually decreasing as the cavity
deformation occurs during the filling.

SimulateField.m calculates the cavity detuning - see Eq. (4-10) –

as a result of (listed in the same order as in the equation) Lorentz-
force feed-forward pre-detuning (positive to compensate for the
expected Lorentz-force detuning, which is negative), slow
microphonics, fast microphonics and Lorentzforce-detuning (∆ωLF).
The Lorentzforce pre-detuning, ∆ωLj, and the slow micro-phonics
detuning σmjRj are both set during the initialization of ∆ω . Note that
the scream.m script recalculates the pre-detuning from the new
Lorentz-force detuning constants KL (see the discussion in 4.2). The
fast microphonics detuning contribution, σmfjRj is added again at each
time step (with Rj,i varying each time i). The Lorentzforce detuning is
field dependent and is therefore recalculated from the actual cavity
fields for the next time-step. It is also the strongest contribution to Eq.
(4-10). The calculation of ∆ωLF is discussed in section 4.7.

()HzradLFRmfRmL ijijijijijjij −∆+++∆=∆ ,,,,,, ωπσπσωω 22 (4-10)

∆ωLj is usually positive and ~2 kHz in TESLA type cavities, several

times larger than the cavity bandwidth. It is calculated in the input
from the Lorentz-detuning constant and the nominal cavity voltage.
Scream.m recalculates it to adjust it to the randomly varied individual
cavity detuning constants.

The half-widths of the slow and fast distribution of microphonics

effect in cavity j, σmj and σmfj is taken from the Cavities input. Since
the slow micro-phonics detuning is updated every pulse its

 S.C.R.E.A.M – program documentation

 4-24

characteristic time constant is ~Hz. The fast micro-phonics distribution
is updated at every bunch (=time-step=1µsec), so the characteristic
time constant is MHz. It is not clear whether such fast microphonics
really exist. The fast micro-phonics was implemented nevertheless.
The micro-phonics detuning frequencies being much smaller (10-100
times) than the Lorentz-force detuning frequency, it is secondary.
When the Lorentz-force detuning is compensated, however,
microphonics can become the leading detuning term (it remains much
smaller than the bandwidth).

The Lorentzforce-detuning frequency shift is one of the last elements

calculated in SimulateField.m. It is, in fact, calculated by a special
routine called detuning.m, called from SimulateField.m once every
time step for the next time step. The Lorentz-detuning needs to be
recalculated at every time-step, because it depends on the cavity
fields, which can vary from bunch-to-bunch. The Lorentzforce detuning
constant Kj (Hz/(MV)2) of the jth cavity is taken from the Cavities input.

The half-width of the distribution of Lorentz-detuning constants in

cavity j, ∆kLj , which is called Kspread in Cavities and defined relative
to KL, is added to the Lorentz-force detuning constants once every
“file” (that is why there is no bunch index i with the random function R
in Eq. (4-9). The random variation of the Lorentz detuning constant for
each cavity (the last term in Eq. (4-9)) is performed in scream.m,
which prepares the new KLj vector for the Simcav structure. This set of
constants is kept for every Nfile. As before, the random numbers are
provided by the MATLAB randn function. The ∆ω factor for each cavity
at each time step is also given in the output (cr.dw).

Loop over Time

At the core of the SimulateField.m routine is the calculation of the

instantaneous field in the cavities during the passage of every bunch.
Following initialization of the main parameter arrays and the beam
injection jitter settings described above, SimulateField.m enters the
loop over the time steps. SimulateField.m tracks the particles
through the linac before calculating the cavity fields. The cavity field
changes due to beam loading and feedback are therefore applied to
the next time-step. The beam tracking is performed with
acceleration.c, which calculates the energy-time profile of all macro-
particles in the bunch along the linac. The bunch energy and especially
the phase information are necessary for the subsequent calculation of
the field amplitude in each cavity, CField, because of its effect on the

 S.C.R.E.A.M – program documentation

 4-25

beam-loading. Once the bunch has been tracked through the linac the
Time and Energy arrays (Ncav×Nmpb) are available to calculate the
beam-loading parameter for the next bunch. The main parameters for
beam-loading are the phase of the bunch with respect to the
synchronous phase (which includes the beam phase advance!), the
bunch current and the beam energy dependent (also in Vfwd) transit
time factor. The phase-factor is calculated from the difference of the
cavity arrival time and the Cavities.Time vector, which contains the
arrival times at the cavities for the synchronized particle.

Cavity Voltage

Fig. 4-9 shows the basic physics model according to which the cavity
voltage is calculated. This model assumes that the beam-loading (∆Vb)
occurs in a much shorter time than the duration of the time step (here
1 µsec), thereby approximating the beam-passage with a delta-pulse.
After the passage of the bunch the refilling of the cavity, which is a
slower process, brings the cavity voltage back to more or less the
desired level. The cavity re-filling within a time step is assumed to
occur at constant klystron power. At the same time the cavity is losing
power through the input coupler. As clearly shown in the plot the filling
and coupling loss functions are linear for the duration of a few time
steps. Also, the total cavity forward power is regulated (feed-forward

24.7

24.8

24.9

25

25.1

25.2

25.3

25.4

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (nsec)

C
av

ity
 v

ol
ta

ge
 (M

V)

beam-loading
filling
coupling loss
total voltage
old voltage

Figure 4-9: Example of beam-loading, filling, coupling loss and the resulting cavity voltage.

 S.C.R.E.A.M – program documentation

 4-26

voltage Vfwd). The regulation includes the tabulated feed-forward
settings (SFwd0), the vector-modulator phase-change and amplitude
(CFwdpl) and the vector-sum feedback. The vector-sum (included in
CForwd) and vector-modulator (CFwdpl) feedback settings applied
were determined during the previous time step. This process is
repeated every time step. The change of voltage in the cavity is
described with Eq. (4-11) 2, where ∆ω is the cavity detuning (Eq. 4-10)
from the klystron drive frequency and ijV ,

)
 the complex cavity field. The

derivation of this equation is given in Appendix B.

In the Fermilab PD the bunch spacing is much shorter than 1 µsec,

but the bunch charge in S.C.R.E.A.M can be chosen such that the
average beam-loading is the same. The fact that the filling curve is
linear within the time step of the program allows this simplification.
(The voltage at the end would look the same if the beam-loading steps
would be distributed over many smaller steps.)

SimulateField.m calculates the cavity fields and forward power

settings for the next time-step (bunch) using Eq. (4-11), where ijV ,

)
 is

the voltage in cavity j at time i, ∆Vbj,i, the beam loading voltage due to
bunch i, and Vfwdj,i, the forward wave voltage as supplied by the
klystron via the phase-shifter (if there is one). This equation describes
the subtraction of the beam-loading voltage (Eq. (4-12)) from the
cavity voltage as well as the addition of the forward power. The factor
exp(-ω12∆t) describes the power lost through the input coupler. The
phase factor exp(i∆ω∆t) describes the detuning of the cavity. The
calculation of ∆ω was discussed before (Eq. 4-10) and is discussed
again in section 4.7, where the detuning.m script is introduced. The
actual cavity voltage field ijV ,

)
=CFieldj,i is a complex matrix of

dimension NcavxNs. The difference between the cavity phase and the
klystron (or reference) phase (=zero) is contained in the complex
angle. Referring to the graphs in Fig. 4-9 this calculation provides the
voltage at every µsec (the end points of the shown graphs). Also given
below is Eq. (4-11) in the notation used in the program.

{ } ()[]

[] ()[] ()[][] ()MVeVfwdeVbV

VfwdeVfwdVbVV
ti

ij
ti

ijij

ij
ti

ijijijij

ijjijj

ijj

∆∆−−∆∆−−

∆∆−−
+

−+∆−=

=+−∆−=
,,

,

,,,

,,,,,

ωωωω

ωω

1212

12
1

1
)

))

 (4-11)

CFieldj,i+1(MV)=(CFieldj,i-simbeamj,i-CPj,i)x(e-(w12j-idwj,i)dt)+CPj,i

2 M. Huening, “ Selbstoptimierende Parametersteuerung der Hochfrequenz des Supraleitenden
Linearbeschleunigers TESLA Test Facility”, Master thesis, RWTH/DESY, June 1998

 S.C.R.E.A.M – program documentation

 4-27

CPj,i(MV)=(2w12j/(w12j -idwj,i))xCDrivej,i

At the klystron level the phase and amplitude of the RF signal are

regulated using vector-sum regulation. Certain cavities also have a
phase-shifter. Both feedback systems, together with the feed-forward
set-table (Eq. 4-8) determine the Vfwd function. This function is
calculated with Eq. (4-14), explained later. The vector-sum control is
described in further detail later (section 4-8). The effect of the fast
ferrite vector-modulator is calculated at a later step with another
script, also described later in this document (section 4.9). The cavity
voltage and the forward-power settings are integrated from time step
to time step. The beam-loading function is discussed next. Also shown
in Fig. 4.9 is that the voltage variation during each time step is less
than 1%. This is a benchmark figure for what the feedback control
systems have to be able to achieve.

Beam-Loading

The beam-loading voltage ∆Vbj,i in each cavity j is calculated in

SimulateField.m for each time step i with Eq. (4-12). A derivation of
this formula is given in appendix B. Given below is the same formula in
the notation used in the program.

()()()[])(' ,,
,, MVtrRFeTIiniVb jj

k
i

tatsyncRFi
kjkij

kjkjjj 60 10−−−− ∆=∆ ∑ ωωφ
 (4-12)

simbeamj,i(MV)=IFacj,ixCCurj,i=ωRFjxrjx∆tx10-6xCCurj,ixe-iφ0j

The phase-factor (ωRF(tsyncj-taj,k))i is calculated from the arrival

time of the macro-particle k calculated with acceleration.c on the
basis of the cavity fields (which is calculated from beam loading and
feedback in the previous time step). The macro-particle currents are
weighted with the macro-particle phase-factors (which are relative to
that of the synchronous phase). It obviously also includes the fixed
beam phase advance defined in the input. The beam-loading also
includes the normalized cavity shunt impedance, r (=Rsh/Q0), the
cavity frequency, ωRF, and the transit time factor, T’j,k. T’j,k is a matrix
which contains TTF of the macroparticle k in the cavity j (calculated
with acceleration.c), taking into account the actual βb of each macro-
particle in each cavity. The synchronous particle arrival time, tsyncj,k is
a matrix made from k vectors of j length, which contains the arrival

 S.C.R.E.A.M – program documentation

 4-28

time for the synchronous particle – with the same column copied k
times. Multiplication over the time step converts the bunch current Ib
to a charge, which is the relevant parameter for beam-loading. As
shown in Fig. 4-9 the beam loading voltage is subtracted from the
actual voltage instantaneously, producing a step in the voltage
function, since the beam passes through the cavity in a very small
fraction of the time step. Also indicated in the equation above is that
the output parameter CCur represents the beam-loading. Upon
division by T‘j,k (which is hard to calculate during post-processing but
can be replaced by the synchronous transit-time factor as a first order
approximation), CCur becomes the beam current.

Forward Power Feedback

Eq. 4-14 describes the Vfwd function. SVfwd is the forward voltage

signal including vector-sum and vector-modulator feedback. At the
core of this calculation is the calculation of the average difference
voltage vector ijijj VvVcav ,,

)
− , which is the basic signal for the vector-

sum feedback. In fact, the difference signal between nominal field and

measured field, (){ }
ljijijj GVvVcav ×− ,,

)
, also needs to be averaged over

the module (using the dimsum.m routine) in the case of the vector-
sum control. The effect of the vector-modulator is accounted for in the
complex attenuation Aps. This complex factor is calculated in the
dophaseloop.m routine. The individual cavity attenuation aj is also
multiplied to SVfwd.

The voltage one actually gets in the cavity for a voltage SVfwd

coming down the coupler is reduced in the presence of detuning (un-
matched cavity impedance) and coupling loss. As is explained in
appendix B the forward voltage signal needs to be multiplied with an
attenuation and a phase-factor, (Eq. 4-13), in this case. Note the
asterisk to Vfwd*, needed because the definitions of the forward wave
voltage in Eq. (4-13) and (4-14) differ slightly. Vfwd in Eq. (4-14) will
receive the factor in the parenthesis when inserted in Eq. (4-11).
Strictly speaking the set voltage SVfwd is only reached in the cavity
after a time t>τf (in the ideally tuned case). The physics on which Eq.
(4-13) is based is explained in appendix B.

()
()() ()MVe

i
SVfwd

Vfwd ti

ijj

ijj
ij

ijj ∆∆−−
+ −

∆−

×
= ,

,

,
,* ωω

ωω
ω 12

1 1
12

122
 (4-13)

 S.C.R.E.A.M – program documentation

 4-29

Also included in Eq. (4-14) is the reflection from the cavity to the

vector-modulator (the second term in the parenthesis in the first line
of Eq. 4-14). The reflection arises from the attempt of the vector-
modulator to change the field in the cavity by the amount
()ijij SVfwdV ,, −
)

. The reactive power Rps, which is calculated also in

dophasellop.m, is the reflected power related to the sinus of (half of)
the phase-difference between the reflected signals returning into the
two branches of the phase-shifter. This reflection is sent back to the
cavity, where reflection happens again. Given the many RF periods
within a time step this term becomes a converging geometrical series
Rps/(1-Rps). This behavior would not occur if the phase-shifter had an
additional circulator between phase-shifter and cavity.

Eq. (4-14) summarizes the forward voltage calculation, where

ijj vVcav , is the set-field in the cavities. The exponential factor from Eq.

(4-13) will be added in the program to Vfwd in Eq. (4-11). The
normalized fill function is included here because the vector-sum
control is also active during the filling. jj rQL2 is the conversion factor,

converting Sfwd into a voltage (SVfwd). More details on the vector-
sum contribution can be found in section 4.8. More details on the
phase-shifter contribution can be found in section 4.9.

()

() ()() ()MVSVfwdV
Rps

Rps
SVfwd

i
Vfwd

aApsrQLSfwd
arQL

GVvVcav
SVfwd

ijij
ij

ij
ij

ijj

j
ij

l

jijjjij
jjj

jijijj
ij

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
+

∆−
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

×××
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

×

×−
=

+ ,,
,

,
,

,
,

,,
,,

,

)

)

112
122

20
2

1 ωω
ω

 (4-14)

The output parameters CDrive and CForwd contain the relevant

components of the expressions above (components in square
brackets) and can therefore be used to reconstruct the control signals
and forward power.

SVfwdj,i=CForwdj,i(MV/(Ω)1/2) x (Apsj, x aj x (2QLjrj)1/2

Vfwdj,i=2w12j/(w12j-idwj,i) x CDrivej,i(MV)

 S.C.R.E.A.M – program documentation

 4-30

The forward power (in kW) that the klystron needs to supply can be
calculated from (CForwd2) x 109. The actual forward wave voltage
change happening in the cavity at each time is:

∆Vfwdj,i(MV)=(2 x Vfwdj,I x e-(w12j-i∆wj,i)) / (1-∆wj/w12j) .

Note that one can calculate the forward power actually delivered

from the klystron with (CForwd2) x 109 because of the presence of
feedback. In reality the attenuation due to detuning and coupling loss
would be pre-compensated by the klystron, by increasing the output
power by the respective factor (and this would improve the feed-
forward component). This step was not explicitly included in
S.C.R.E.A.M. Note, however, that the feedback system will notice
during the next time step that less power than needed has actually
reached the cavity because of detuning and coupling loss (see Eq. 4-
13 for the voltage reduction factor). Therefore the feedback signal will
be bigger by the respective amount in the next time step. Note that
CForwd also includes the gain factor of the vector-sum control.
Similarly as with the attenuation due to detuning and coupling loss the
feedback circuit automatically regulates the input power and voltage to
the desired level and therefore corrects for the gain factor by reducing
the control signal before amplification. If the control system works
properly the power provided by the klystron after filling should match
the power removed by the beam (for zero detuning). This is a “sanity-
check” for the forward power signal.

The SimulateField.m calls dophaseloop.m after completing the

calculation of (Eq. 4-14).

Miscellaneous

In the context of the TESLA R&D, fast (Piezo-) and slow (blade-)

tuners were developed that successfully compensated for microphonics
and Lorentz-force detuning in the TTF linac. These are NOT
implemented in this program. The program assumes that the slow
tuner successfully compensates for the cavity detuning during cool-
down. The Lorentz-force detuning compensation just consists in
guessing the total detuning at full field and feed-forward correcting for
it with a constant pre-detuning of the cavity. A Piezo-tuner could be
easily simulated in the program by reducing the actual Lorentz-force
detuning constants (Cavities.KLorentz).

 S.C.R.E.A.M – program documentation

 4-31

Save

As the final procedure SimulateField.m reduces the number of

columns (=number of bunches) of all fields in the cr structure by the
Downsample parameter from the General field (i.e. only every
Downsampleth time step is saved). Since all cavity properties, such as
forward power and feedback, detuning, etc,.. evolve slower than the
time-step the calculation of the full array is necessary. The down-
sampling can only be done after the fact. NrunxNfiles is the total
number of pulses simulated. The loops over Nrun and Nfiles are
implemented in scream.m. The procedures used to reduce the
number of data after NrunxNfiles runs are discussed there.

4.7 detuning.m

The detuning routine calculates the cavity Lorentz-force detuning in

each cavity at every time step from the cavity fields in the preceding
time step. It is called for each time steps of an RF pulse by
SimulateField.m. In the function call it receives the accelerating
voltage in the cavities of the preceding time step (1−ijV ,

)
), the frequency

change due to detuning in the preceding time step (∆ωj,i), the time
step (∆t) and the current Lorentz-detuning constant of each cavity
(KLj). The Lorentzforce detuning constants for each cavity, KLj, are
determined once in the input, and varied randomly with the relative
Lorentz-detuning factor, ∆KLj, once every file (in scream.m). The
Lorentzforce detuning is not believed to change once the accelerator is
built. The KL constants are therefore fixed for all “runs” within a “file”
(more in the discussion of scream.m). It returns the frequency
change due to Lorentzforce detuning ∆ωj,i in each cavity at timestep i.
The output field cr.dw contains the total detuning (as given in (Eq. 4-
4)).

The mechanical rigidity of the cavity delays the change of frequency

in the cavity. Therefore detuning of the cavity is characterized by the
time constant τc. Although the system has many mechanical
resonance frequencies, the process is described well enough with only
one time constant. This time constant is defined in the detuning.m
routine and was chosen to be 300 µs 3. Eq. (4-15) gives the formula
used to describe the frequency change of the cavity due to Lorentz-
force detuning:

3 V. Ayvazyan, S. Simrock, “Dynamic Lorentz Force Detuning Studies in TESLA Cavities”, presented at
the European Particle Accelerator Conference 2004, Lucerne, Switzerland, July 2004

 S.C.R.E.A.M – program documentation

 4-32

()2
1 21 ijjijij VKL

c
t

c
tLFLF ,,,

)

τ
π

τ
ωω ∆

+⎟
⎠
⎞

⎜
⎝
⎛ ∆

−∆=∆ − , (4-15)

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200 1400

Time (msec)

R
es

po
ns

e
(a

.u
.)

Tau=300microsec
Tau=0

Figure 4-10: Response function to step calculated with Eq. (4-15).

where the ∆t/τc factor dampens the frequency response very much like
a low-pass filter. When a sudden electric field step is applied to the
cavity the detuning first is negligible (a ∆t/τc fraction of the prescribed
KL). After a time t~τc, however, the detuning converges to the
prescribed (DC) value. Fig. 4-10 shows the response function
calculated with Eq. (4-15) for a step-function excitation to an arbitrary
DC amplitude of 1. The approach function is exponential.

The Lorentz-detuning factor for each cavity KLj is re-calculated for

every “file” in scream.m with the help of the MATLAB randn function
(Eq. 4-16).

()
() ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆+= 21

MV
HzRkLKLKL jjoldjnewj ,, (4-16)

The initial values of KLj are those given in the input
(Cavities.KLorentz). Detuning.m also includes a provision for the case
in which no KL is defined in the input. KLj=-1Hz/(MV)2 is assumed in
this case.

 S.C.R.E.A.M – program documentation

 4-33

4.8 dimsum.c

At the klystron level the phase and amplitude of the RF signal is

regulated using vector-sum regulation. The vector-sum regulation
consists in summing the measured complex field vectors from all
cavities within an RF unit (=driven by one klystron), measure its
amplitude and phase with respect to some set-value and derive a
control signal that will, as best as possible, drive the cavity field to the
set phase and amplitude. Fig. 4-11 shows a schematic of the
DESY/TTF vector sum control module. The phase and amplitude
measurement is done after mixing with a signal with a slightly different
frequency. The measurements can then be done on the lower beat
frequency signal. S.C.R.E.A.M assumes that the feedback delay is 1
µsec. This is actually optimistic – the TTF DSP system has a total
processing time of ~4 µsec. Future, FPGA based systems promise to
reach the 1 µsec mark, however.

The actual field amplitude is usually complex and thus includes

information about the cavity detuning (cavity phase-factor). The
program assumes that the RF system phase is zero and therefore the
correction aims at restoring zero phase. In a real (proton) linac the
synchronous phase has to be determined for every cavity separately
using beam-loading. The so measured values (which also include cable
delays) are stored in the set-table and subtracted from the phase-
signal. The set-value in S.C.R.E.A.M, Vcav, is real, so the phase factor

Figure 4-11: Schematic of vector-sum control in DESY/TTF.

 S.C.R.E.A.M – program documentation

 4-34

of the difference contains the entire cavity phase shift as a result of
detuning. The difference signal is redirected toward the input after
multiplication with a proportional gain G and a cavity attenuation
factor a, both defined in the input. The vector-sum control process is
described entirely with Eq. (4-14), where VFwd is the forward voltage,
and ijj vVcav , is the set-field in the cavities. Note that the actual power

that needs to be supplied to achieve a desired voltage is larger by a
certain factor (see first line in Eq. (4-14) to take into account the fact
that the cavity is detuned (as well as coupling loss). The derivation of
these factors is given in appendix B. As discussed before in the context
of the forward power, the feedback system automatically takes care of
this issue.

Since vector-sum regulation is done at the klystron level, all the

relevant parameters (gain, attenuation, difference signal) need to be
averaged over the RF module. SimulateField.m uses dimsum.c to
sum the difference signal over all cavities in each module and to
determine the optimal feedback response at the klystron level, the
crucial step in vector-sum control. The dimsum.c routine performs
partial sums of elements of a (complex) vector passed on to it through
the function call. The routine is optimized for fast processing (and
therefore uses C language).

In particular, dimsum.c is called once every time step i by

SimulateField.m to sum the amplified difference between (real) set-
field, Vcav and the actual, complex accelerating voltage V

)
 in each

cavity j belonging to the module l. The voltage difference is divided by
the conversion factor (2QLr)1/2 to convert it to the square root of
power. It is multiplied by the feedback gain and divided by the cavity
attenuation. The routine uses a simplification when applying an
average of the (proportional) gain of all cavities in each module to
amplify the difference between the set and the actual field. The real
and imaginary parts of V

)
, which are passed on to dimsum.c in the

function call from SimulateField.m, are summed separately. The
most time consuming part of the routine is related to defining which
cavities belong to a module. To that end the function call also includes
the Module vector from the Cavities structure (see discussion of input)
and the Nmod (= number of modules) variable. Cavities.Module is a
size Ncav vector that contains the module number to which each
cavity belongs. This vector is renamed as idxj in dimsum.c. The
components of this vector are used as the index of a temporary vector,
SP, which sums all the amplified difference-signals j into the element l,
where l is the module number. This l-size vector is then augmented

 S.C.R.E.A.M – program documentation

 4-35

back to size j, with all cavities in one module having the same
difference signal value, the average per module.

4.9 initphaseloop.m and dophaseloop.m

Dophaseloop.m describes a possible implementation of the fast

ferrite vector-modulator with the characteristic parameters as defined
in Phaseloop. The following describes an implementation of phase-
shifters based on an approximation of a proportional-differential (PID)
regulator. Any other design is also possible (first trials with a time-
optimal regulator were also done but are not discussed further here).
A disadvantage of the PID regulator is its sensitivity to noise.
Dophaseloop.m requires prior initialization via initphaseloop.m. The
initialization script is called by SimulateField.m.

The fast ferrite vector-modulator is made out of two phase-shifters,

which each act independently on one half of the forward power. Fig. 4-
12 shows a schematic of a possible implementation of the vector-
modulator. It consists of two ferrite loaded stubs with a bias coil for
each. The phase-shift in each branch is set via its bias-field. Eq. (4-17)
describes the effect of the vector-modulator on the forward power. If
the two branches produce the same phase-shift (ψ1= ψ2), the
attenuation is 1 (the reflection is zero) and the effect consists only of a
phase-shift (ψ1+ ψ2)/2. If the phase-shifts in the two branches are not
the same, reflection occurs, and the forward signal is attenuated with
by cos((ψ1- ψ2)/2). In other words the phase-shift, φps, depends on
the average phase and the attenuation A depends on the phase-
difference. Note that (4-17) also includes ψ0, the initial phase-shift
before the effect of the biased ferrite (e.g. provided by an extra-length
of wave-guide). This initial phase-shift allows the phase-shifter to
operate at a different point than zero (at the expense of additional
signal attenuation, however). The initial phase-shift is assumed to be
symmetrically distributed (ψ1→ ψ1+ ψ0, ψ2→ ψ2- ψ0) such as to not
cause any residual phase-shift.

()

()

()
() ⎟

⎠
⎞

⎜
⎝
⎛ +−×==

⎟
⎠
⎞

⎜
⎝
⎛ +−×==

⎟
⎠

⎞
⎜
⎝

⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +

021
2
1

021
2
1

2
1

2
1

21

21

ψψψ

ψψψ

ψψ

ψψ

sinPr

cos

i

i

e
Pin
eactRps

e
Pin

PfwdAps
 (4-17)

The model implementation of the vector-modulator in the

dophaseloop.m script is strongly simplified (see block-diagram in Fig.

 S.C.R.E.A.M – program documentation

 4-36

4-12). The elements contained are: -1- the PID regulator, -2- a
saturation condition reflecting the limited “range” of the phase-shifter
and –3- a (low-pass) filter element that takes into account the finite
reaction time of the phase-shifter (mainly due to the inductance of the
bias coils and the voltage limitation of the bias coil power-supplies).

After initialization, dophaseloop.m calculates the correction signal,

Eq. 4-18. The to be corrected error signal igpsV ,

)
∆ is the difference

between the set field and the actual field in each cavity g (g because
only the cavities g have a vector-modulator) after subtraction of the
correction provided by vector-sum control. Therefore the second term
in Eq. 4-18 is the average difference signal over the module l. This
prevents the phase-shifters from working against the vector-sum
control. The modulus of igpsV ,

)
∆ is the amplitude error and the

imaginary phase angle the phase error.

PID L/RPID L/R

Figure 4-12: Schematic of fast ferrite vector-modulators for the Fermilab PD (wave-guide type).

() ()[] ()MVVvVcavVvVcavpsV
ligiggigiggig ,,,,,

)))
−−−=∆ (4-18)

Below is a step-by-step discussion of the effect of the different

phase-shifter components listed above on the correction signal.

The two signals S1 and S2 refer to the amplitude and the phase

correction. Eq. 4-19 describes the PID regulator, with the proportional
(first term) and differential (second term) components. The weighting

 S.C.R.E.A.M – program documentation

 4-37

between the components does not vary from before to after filling.
Usually the differential component is chosen to be much stronger than
the proportional gain. This ensures that the phase-shifter reacts faster.
The respective input parameters in Phaseloop are AmpGain (GAps) and
AmpDGain (DAps) for the amplitudes (S1) Gain (Gpps) and DGain
(Dpps) for the phases (S2). Eq. (4-19a) describes signal 1
(amplitude) and (Eq. 4-19b) the phase signal. Note that Eq. (4-19) is
slightly inaccurate – it should in fact calculate the amplitude and phase
from the modulus and the phase of the complex control signal. At a
small phase, however, the real and imaginary parts do the job as well
(because φ~sinφ), and faster. Fig. 4-13 shows the PID response
function to a control signal φps=10°, A=1. The proportional part is
negligible against the differential part (spike) for the set of gains
chosen.

 () () ()relDApspsVpsVGApspsVS gigiggigig 11 −∆−∆ℜ+∆ℜ= ,,,,

)))
 (4-19a)

 () () ()radDppspsVpsVGppspsVS igiggigig 12 −∆−∆ℑ+∆ℑ= ,,,,

)))
 (4-19b)

Phase-shifter Response function

0

2000

4000

6000

8000

10000

12000

0 200 400 600 800 1000

time (micro-sec)

R
eg

ul
at

or
 p

ha
se

 s
ig

na
l

(d
eg

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

R
eg

ul
. a

m
pl

. s
ig

na
l (

re
l)

S2 (deg)
S1 (prop)

Figure 4-13: PID-signal as response to a 10° phase signal on the vector-modulator input. No
amplitude attenuation signal (S1=0). (GAps=0.04, DAps=200, Gpps=0.2, Dpps=1000)

Eqs. (4-20 & 4-21) describe the calculation of the phase-shifts

required in each branch, PS1 (ψ1) and PS2 (ψ2) to deliver the
amplitude and phase correction. Here PS1 and PS2 stand for the
phase-shifts (in rad) provided by the two different branches of the
vector-modulator. Each branch takes care of part of the requested

 S.C.R.E.A.M – program documentation

 4-38

phase-shift and attenuation. The amount of phase-shift needed in each
branch of the phase-shifter for a given total phase shift, φps, and
attenuation, Aps, can easily be calculated:

ψ1=φps+arccos(Aps), ψ2=φps-arccos(Aps),

φps, the total phase-shift is (1/2(ψ1+ ψ2)) and Aps the (relative)
amplitude is cos(1/2(ψ1- ψ2)). That does not include the effect of the
working point ψ0. The best working point (because of fastest slew
rate) is ψ0=±45° in branches 1 and 2 (albeit reducing the transmitted
power by one half). No net phase-shift is therefore added as a result of
ψ0. Eq.(4-20) implements the above, including the working point ψ0.
Eq. (4-20) also includes a saturation condition. When the angle
becomes larger than ψsat, the phase-shifts PS1 or PS2 cannot follow.
This is the result of the use of the arctan function, which saturates at
90° when the argument diverges.

It also needs to be noted that Eq. (4-20) mixes the attenuation and
phase signals S1 and S2. If ψ0=0° the amplitude signal is some value
close to zero (and not close to one as is Aps). As with the vector-sum
control feedback discussed in 4.8, this is allowable since Eq. (4-20) in
fact is the part of a feedback loop, which auto-corrects for “wrong”
start values. The mixing of the feedback loop and the real physics
description can give rise to confusion. In the case in which ψ0≠0° the
amplitude working point shifts from zero to ψ0 (+S1). This is taken
into account with the 1/sin(ψ0) factor.

)(
/

)sin(arctan/

)(
/

)sin(arctan/

,
,

,

,
,

,

rad
sat

S
S

satPS

rad
sat

S
S

satPS

ig
ig

ig

ig
ig

ig

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

⋅=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
+

⋅=

πψ
ψπψ

πψ
ψπψ

2
0

1
2

22

2
0

1
2

21

 (4-20a/b)

Fig. 4-14 shows an exemplary implementation of Eq. (4-20) Fig. 4-15

shows the effect of the arctan saturation function in Eq. (4-20).

 S.C.R.E.A.M – program documentation

 4-39

Phase-shifter Response function

-10

0

10

20

30

40

50

0 200 400 600 800 1000

time (micro-sec)

Ph
as

e-
sh

ift
 (d

eg
)

PS1 (deg)
PS2 (deg)

Figure 4-14: Saturator response to a 10° phase signal after transformation by the PID. Obviously
ψsat is 45° in this example. No amplitude attenuation signal (S1=0). (GAps=0.04, DAps=200,
Gpps=0.2, Dpps=1000)

Phaseshifter Saturation

0
5

10
15
20
25
30
35
40
45
50

0 500 1000 1500 2000

S2 (deg)

PS
1

(d
eg

)

PS1(deg)

Ψsat=π /4

Figure 4-15: Saturation function as implemented in Eq. (4-20).

Eq. (4-21) describes the low pass filter element that implements the

finite reaction time of the phase-shifter (as a result of the solenoid
inductance and the power supply limitations). The phase-shifter signal
is integrated and the actual signal only provides an increment of
timestep/τps to the total signal. τps, which is given in
General.PhaseTau, is the phase-shifter time constant. PS1’ and PS2’
are also similar to the output phase-shifts sh1 and sh2 of the two
phase-shifters (in rad).

 S.C.R.E.A.M – program documentation

 4-40

)(''

)(''

,,,,

,,,,

radsh
ps
tPSPSPS

radsh
ps
tPSPSPS

igigigig

igigigig

11

11

2222

1111

+−

+−

=
∆

+=

=
∆

+=

τ

τ
 (4-21)

Fig. 4-16 shows the slowed response of the vector-modulator as a
result of the L/R time constant as implemented in Eq. (4-21).

Phase-shifter Response function

0

2

4

6

8

10

12

0 200 400 600 800 1000

time (micro-sec)

Ph
as

e-
sh

ift
 (d

eg
)

sh1 (deg)
sh2 (deg)

Figure 4-16: Effect of the L/R time constant on the response of the vector-modulator to a 10°
phase-shift signal. (τps=150 µsec).

The main dophaseloop.m output, however, is CFwdpl (or Aps) the

complex factors (relative to 1) with which the forward power from the
klystron needs to be multiplied to simulate the phase-shifter
attenuation (and phase-shift). Those factors are calculated with Eq. (4-
22).

()
() ()[] ()releeAps igig shishi

ig
0201

1 02
1 ψψ

ψ
+−

+ += ,,

cos, (4-22)

() () ()relePSGRRps gPSi
iggig

12
1 1 ,'

,, 'sin⋅=+ (4-23)

Eq. (4-22) “cheats” in the sense that the attenuation due to
operation at ±ψ0 is removed from the reported attenuation. Note that,

 S.C.R.E.A.M – program documentation

 4-41

apart from the removal of ψ0, Eq. (4-22) corresponds exactly to Eq.
(4-17), but written in a more “intuitive” way (the two exponential
factors describe exactly what the two phase-shifter branches actually
do!). The complex Aps and Rps are returned to SimulateField.m and
used in Eq. (4-14). Note that if ψ0≠0 the modulus of CFwdpl can be
larger than 1. In this case the increase of power from the phase-shifter
comes from a reduction of the offset power reflection due to the
chosen working point.

Fig. 4-17 shows the phase-shifter response calculated with Eqs. (4-

19) - (4-22) for a step function control signal (demanding 10 deg at
t=300 µsec). S1 was set to zero in this calculation, thus no attenuation
was included in the control signal. The jump at 300 µsec is related to
the strong differential gain (here 1000). It takes the phase-shifter
~650 µsec to deliver the requested phase-shift (the time constant
assumed was 150 µsec). The strong differential gain does partly
overcome the time-constant limitation of the phase-shifter. The signal
attenuation shown is ~1% (-0.1dB), very close to zero. It is a result
from moving the phase away from the working point. As mentioned
above the attenuation due to the π/4 working point is not taken into
account (this would add a constant offset of –3dB to the amplitude
signal in Fig. 4-17). Besides the saturation of the control signal using
the arctan function, there is no further limitation, such as for instance
on the voltage of the power supply for the phase-shifter bias magnets.
As mentioned before the as implemented vector-modulator does not
include a circulator between it and the cavity.

0

2

4

6

8

10

12

0 200 400 600 800 1000

time (micro-sec)

Ph
as

e-
sh

ift
 (d

eg
)

-3

-2.5

-2

-1.5

-1

-0.5

0

A
m

pl
itu

de
 (d

B
)

phase (deg)
phase-shift
attenuation (dB)

Figure 4-17: PID-based vector-modulator response as calculated with dophaseloop.m.

 S.C.R.E.A.M program guide

 5-1

5 EXAMPLE – FERMILAB PROTON DRIVER

5.1 Fermilab Proton Driver

The proton-driver (PD) is a proposed accelerator at Fermilab that
provides high power H- beam at 8 GeV. Although the proton driver is a
multi-mission machine its primary purpose is to produce neutrinos. Its
other potential uses include the proton and antiproton production for
the Tevatron and the Fermilab fixed target program as well as an X-
ray FEL, an injector into a linear collider or a neutrino factory (muon
collider) and a spallation neutron source. Besides very large beam
power (2 MW @ 8 GeV), its multi-mission purpose, are the primary
features of the proton driver.

The following will briefly discuss the result of a simulation of the

proton driver to document the capabilities of the S.C.R.E.A.M code.
Fig. 5-1 shows the layout of the proton driver linac as implemented in
the program. Only the superconducting section (E= 87-8000 MeV) was

DTL 1 DTL 2 DTL 3 DTL 4 DTL5 DTL6RFQRFQ

Modulator Modulator

(7 total)
 402.5 MHz
SNS Klystrons
 2.5 MW

H -

B=0.47 B=0.47 B=0.61 B=0.61 B=0.61 B=0.81 B=0.81 B=0.81 B=0.81 B=0.81 B=0.81 B=0.81

Modulator Modulator Modulator Modulator Modulator

12 cavites/ Klystron 8 cavites/ Klystron

805 MHz
 SNS
Klystrons
 5 MW

Warm Copper
Drift Tube Linac
402.5 MHz
0 - 87 MeV

Beta=1 Beta=1 Beta=1 Beta=1 Beta=1 Beta=1 Beta=1 Beta=1 Beta=1 Beta=1 Beta=1 Beta=1

Modulator Modulator Modulator Modulator Modulator Modulator Modulator Modulator

Beta=1 Beta=1 Beta=1 Beta=1 Beta=1 Beta=1

Modulator Modulator Modulator Modulator

Beta=1 Beta=1 Beta=1 Beta=1 Beta=1 Beta=1 Beta=1 Beta=1 Beta=1 Beta=1 Beta=1 Beta=1

Modulator Modulator Modulator Modulator Modulator Modulator Modulator Modulator

Beta=1 Beta=1 Beta=1 Beta=1 Beta=1 Beta=1

Modulator Modulator Modulator Modulator

12 cavites/ Klystron

1207 MHz Beta=1

 41 Klystrons (3 types)
 31 Modulators 20 MW ea.
 7 Warm Linac Loads
 48 Cryomodules
384 Superconducting Cavities

8 GeV 2 MW LINAC

Superconducting "SNS" Linac
805 MHz
0.087 - 1.2 GeV

"TESLA" LINAC 24 Klystrons
288 cavites in 36 Cryomodules

10 Klystrons
96 cavites in 12 Cryomodules

Figure 5-1: Layout of the proposed Fermilab proton driver (2 MW @ 8 GeV baseline) as
simulated with S.C.R.E.A.M. below (G.W. Foster, 2003 Proton Driver Design study - from
http://tdserver1.fnal.gov/project/8GeVLinac/DesignStudy/).

 S.C.R.E.A.M program guide

 5-2

implemented in S.C.R.E.A.M. The linac consists of two βc=0.47 cryo-
modules, three cryo-modules with βc =0.61 cavities, seven cryo-
modules with βc=0.81 cavities and 36 cryo-modules with βc=1 cavities.
All βc<1 cavities are elliptical with six cells, very much like those
proposed for the RIA accelerator by MSU. The βc=1 cavities are
elliptical nine-cell cavities, very much like those developed for the
TESLA program. All cryo-modules hold eight cavities. There are eleven
klystrons (each counted as a “RF-module” in the program) in the βc<1
section and 24 RF modules (a one klystron each) in the βc=1 section.
The program therefore includes 35 modules. The βc<1 section operates
at the SNS frequency (805 MHz), the βc=1 section at a “TESLA-like”
frequency (1207 MHz). The total cavity count is 384. This particular PD
design is one of two options currently under consideration.

5.2 S.C.R.E.A.M input

The following plots represent the major input parameters. The first

set of plots describes the components of the linac (as shown in Fig. 5-
1). Table 5-1 contains the main scalar parameters for the simulation
discussed here. For details consult chapter 3.

Table 5-1: Constant input parameters

for S.C.R.E.A.M Proton-Driver
simulation.

Field Value
Nfiles 1
Nruns 1
doPhaseloop 1 (true)
Stepsize 1 µs
Downsample 1
Filltime 500 µs
Beamtime 800 µs
PhaseTau 150 µs
Ncav 384
Nm 35
Ng 96
Mode π
GapLambda 0.5

 S.C.R.E.A.M program guide

 5-3

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

No of cavity

C
av

ity
 d

es
ig

nb
et

a
Design Beta of Cavities in Fermilab Proton Driver

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

No of cavity

P
os

iti
on

 o
f c

av
ity

 (
m

)

Position of Cavity Centers in Fermilab Proton Driver

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

No of cavity

F
re

qu
en

cy
 (

G
H

z)

RF Operating Frequency of Cavities in Fermilab Proton Driver

0 50 100 150 200 250 300 350 400
50

100

150

200

250

300

350

400

450

500

550

No of cavity

N
or

m
. s

hu
nt

 Im
pe

da
nc

e
(O

hm
)

Shunt Impedance of Cavities in Fermilab Proton Driver

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

No of cavity

N
o

of
 c

el
ls

 p
er

 c
av

ity

Number of Cells per Cavity in Fermilab Proton Driver

 S.C.R.E.A.M program guide

 5-4

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

No of cavity

A
cc

el
er

at
in

g
vo

lta
ge

 (
M

V
)

Total Cavity Accelerating Voltage Fermilab Proton Driver

design
setpoint

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14

16

18

20

No of cavity

S
ig

m
a

m
ic

ro
ph

on
ic

s
(H

z)

HalfWidth of (slow & fast) Microphonics Distribution Fermilab PD

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No of cavity

Lo
re

nt
zd

et
un

in
g

va
ria

tio
n

(r
el

)

Variation of Lorentzdetuning (FiletoFile) Fermilab PD

0 50 100 150 200 250 300 350 400
200

300

400

500

600

700

800

900
Feedforward Lorentzforce Detuning - Fermilab PD

No of cavity

D
e
t
u
n
i
n
g

(
H
z
)

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

Cavity Loaded Q (Optimum & Setpoint) Fermilab PD

No of cavity

Lo
ad

ed
 Q

 (
/1

06)

optimum
setpoint

 S.C.R.E.A.M program guide

 5-5

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

Filltime and FillDelay Fermilab PD

No of cavity

T
im

e
(m

ic
ro

se
c) delay

filltime

0 50 100 150 200 250 300 350 400
0.9

1

1.1

1.2

1.3

1.4

No of cavity

A
tte

nu
at

io
n

(r
el

.)

Cavity Feedforward Power Signal Attenuation Fermilab PD

0 50 100 150 200 250 300 350 400
-30

-25

-20

-15

-10

-5
Phase advance settings Fermilab Proton Driver

No of cavity

P
ha

se
 a

dv
an

ce
 (

de
g)

The optimum loaded Q (QL) in the cavity, i.e. the coupling that gives
perfect matching of the cavity circuit in the presence of beam is
calculated from the expcted beam-loading (see Eq. 5-1). In the βb<1
section, the cavity QL used in the calculation differs slightly from the
design (or optimum), as shown in the figure above and as given in Eq.
(5-1). In driving the cavity slightly off the optimum coupling condition
(and modulating the supplied power by a similar factor), the
differences in beam-loading between the cavities in a module can be
partially compensated for. The off-optimum external Q also slows
down the cavity filling. Therefore the filling starts earlier in the βb<1
sectors. The corresponding cavity forward power modulation is
obtained through the Attenuation (a) factor.

 S.C.R.E.A.M program guide

 5-6

() j
j

j

opt
j

j
j

jopt
j

syncT
a

syncT

QL
QL

rIb
Vcav

QL
'

,
'

,
.

1
2 20

==≈ (5-1)

For the same reason the nominal set field in the 16 cavities of the first
module was modulated with 1/(T’sync)0.5-0.8.

Some of the linac parameters shown in the above plots are the result
of extensive design efforts, such as the number of cavities per module,
the number of cavities of a particular βc, the number of cells in each
particular cavity and their shunt impedance. We therefore cannot
discuss these choices in detail here.

The Lorentz-force detuning and microphonics characteristics in the

βc=1 section are those measured in the TTF linac. For the βc<1
cavities the characteristics measured in the SNS cavities were used as
a basis. As a general trend the Lorentz-force detuning constants
increase in lower frequency cavity designs. Since the accelerating
fields also decreases in these cases the overall detuning tends to
remain more or less the same for the entire linac. The same is true for
micro-phonics. The feed-forward pre-detuning dw was calculated from
the square of the nominal cavitiy field (accelerating voltage) and the
input Lorentz-detuning constants KL0.

The beam phase-advance settings were chosen based on those

proposed for SNS operation.

The second input structure is Phaseloop. The Phaseloop parameters

only apply to the 96 cavities of the β<1 section where fast vector-
modulators are currently being proposed. The vector-modulator
parmeters used are the proportional and differential phase and
ampitude gains. They are shown in the plots below. All other
parameters, such as the phaseshifter operating point ψ0 and the
phase-shifter saturation ψsat, are hard-coded into initphaseloop.m
(and they are listed in Table 5-2).

 S.C.R.E.A.M program guide

 5-7

Table 5-2: Constant input parameters
for simulation of the Phaseshifter in
the S.C.R.E.A.M Proton-Driver
simulation.

Field symbol value
PLSat ψsat π/4
PLSatn 2ψsat/π 1/2
PLIni ψ0 π/4
PLsin sin(ψ0) sin(PLIni)
PLTau τps 150 µsec
PLdel PLdel O µsec
PLIna cos(ψ0) cos(PLIni)

The third set of plots describes the beam parameters. In particular

the distribution of the macro-particles in phase-space at injection is
shown. Three macro-particles were removed from the distribution (at

 S.C.R.E.A.M program guide

 5-8

(-(7-9) sigma in tini) because they tended to get lost during
acceleration. The particles simulated are protons (charge 1, mass 938
MeV). The parameters are given in the plot titles. For details consult
chapter 3. The 69 macro-particles contain a total of 1.5x1011 particles.
The total pulse current therefore is 1.5x1011 particles per mirco-
second, or 25 mA.

Table 5-3: Constant input parameters for the
simulation of the beam injection jitter in the
S.C.R.E.A.M PD simulation.

Field value
Input time O sec
Input energy 87 MeV
Efluc 50 keV
Tfluc 5.8 ps
Ifluc 1%
Ecoherent 50 keV
Tcoherent 5.8 ps
Icoherent 1%
Energy Sigma 60 keV
Time Sigma 9.9 psec
Energy Sigma 60 keV
Sigma Step 1
Nbranch 8
Nσ 9

-80 -60 -40 -20 0 20 40 60 80 100
86.4

86.6

86.8

87

87.2

87.4

87.6

87.8

Arrival time in first cavity (picosec)

M
ac

ro
pa

rt
ic

le
 e

ne
rg

y
(M

eV
)

Injection Footprint in Phasespace in Fermilab Proton Driver

-100
-50

0
50

100

86

87

88
10

9

10
10

10
11

Arrival time (picosec)

Number of Particles and Phasespace Distribution
of Macroparticles at Injection in Fermilab Proton Driver

Energy (MeV)

N
um

be
r

of
 p

ar
tic

le
s

 S.C.R.E.A.M program guide

 5-9

5.3 PreRun Calculation

The results of the tracking calculation of the synchronous particle and

synchronous bunch are presented in the following plots. These
calculations are performed in the PreRun.m routine. They assume the
nominal accelerating voltage in the cavities, neglecting detuning and
beam-loading effects. Of particular interest is the phase-space
distribution of the synchronous bunch. The synchronous bunch has the
synchronous particle in its center. There are some macro-particles,
which appear out of the acceptable range of the energy and arrival
time distribution at the end of the linac. These macro-particles are
considered to be lost. These are mostly particles, which lag behind the
synchronous particle in time and have lower energy. The longitudinal
acceptance of the linac appears to be truncated on the side of later
injection arrival time, presumably as a result of the negative phase
advance of the beam. Efforts were made to reduce the loss fraction
and this is the reason why the injection macro-particle distribution is
not entirely symmetric (see figures above).

The following shows the transit time factor, energy gain and phase of
the synchronous particle as calculated in Prerun. Note that the beam
phase advance is included in the calculation. Cavity detuning is not
included. Also shown is the phase space distribution for the macro-
particles of the synchronous bunch at the start and end of the linac.

0 50 100 150 200 250 300 350 400
0.5

0.6

0.7

0.8

0.9

1

1.1
Transit time factor in Fermilab Proton Driver

No of cavity

T
T

F
’

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30
Energy Gain of Synchronous Particle in Fermilab Proton Driver

No of cavity

E
ne

rg
y

ga
in

 in
 c

av
ity

 (
M

eV
)

 S.C.R.E.A.M program guide

 5-10

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

Position along linac (m)

A
rr

iv
al

 ti
m

e
(m

ic
ro

se
c)

Synchronous Particle Arrival Time in Fermilab Proton Driver

0 100 200 300 400 500 600 700
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Position along linac (m)

E
ne

rg
y

(M
eV

)

Synchronous Particle Energy Along Fermilab Proton Driver

0 10 20 30 40 50 60 70
-20

-16

-12

-8

-4

0

4

8

12

16

20

Macroparticle

T
im

e
di

ffe
re

nc
e

(p
ic

os
ec

)

Arrival Time Difference between MacroParticles
at the end of Fermilab Proton Driver Linac

0 10 20 30 40 50 60 70
-20

-16

-12

-8

-4

0

4

8

12

16

20

Macroparticle

P
ar

tic
le

 e
ne

rg
y

di
ffe

re
nc

e
(M

eV
)

Difference in Energy between Macroparticles
at the End of the Fermilab Proton Driver

20 15 10 5 0 5 10 15 20

20

15

10

5

0

5

10

15

20

Phasespace distribution of sync. bunch w. respect to sync. particle

Arrival time difference to sync. particle (psec)

E
nd

 e
ne

rg
y

di
ffe

re
nc

e
to

 s
yn

c.
 p

ar
tic

le
 (

M
eV

)

2485.6 2485.7 2485.8 2485.9 2486 2486.1 2486.2
6600

6800

7000

7200

7400

7600

7800

8000

8200
Phasespace distribution of macroparticles in synchronous bunch

Macroparticle arrival time (nsec)

M
ac

ro
pa

rt
ic

le
 fi

na
l e

ne
rg

y
(M

eV
)

 S.C.R.E.A.M program guide

 5-11

0.02 0 0.02 0.04
8000

8050

8100

8150

MP E/t (Sync.Bunch, Design Fields) Fermilab PD

Arrival time (nsec, rel. to sync. part)

F
in

al
 e

ne
rg

y
(M

eV
)

5.4 Full Run - One Pulse

Injection Jitter

With a beam time of 800 µsec and the 1 µsec step-size the total

number of bunches simulated during a pulse is 800. The plots below
show a possible random distribution of the bunch centroid start energy
and start time for all these bunches. These distributions were
calculated by SimulateField.m. As discussed in 4.6.), the bunch
centroid E/t/I at injection is shifted with a coherent (fixed for all
bunches) and an incoherent (varying from bunch to bunch)
component, both calculated with the MATLAB randn function on the
basis of the given distribution widths. The coherent contributions in the
case shown were -21.6 keV energy offset (in addition to the 87 MeV
start energy), -9.66 psec time-offset (from 0) and a +0.1253% charge
increase. The plots below show the incoherent bunch centroid shifts for
the 800 bunches in E/t and I. The last figure shows the E/t injection
distribution for all 800x69 macro-particles simulated in one pulse. The
distribution also includes the coherent jitter contributions as well as
the E0/t0/I0 values defined in the Bunches input. The above is for one
pulse and just an example. The calculation results shown below may
very well vary for different pulses (the distribution width, however,
stays the same).

 S.C.R.E.A.M program guide

 5-12

-0.1 -0.05 0 0.05 0.1
0

5

10

15

20

25

30

35

40

45

Bunch centroid start energy (MeV)

N
um

be
r

of
 b

un
ch

es
Incoherent input energy jitter Fermilab Proton Driver

-20 -15 -10 -5 0 5 10 15 20
0

10

20

30

40

50

60

Bunch centroid start time (psec)

Incoherent start time jitter Fermilab Proton Driver

N
um

be
r

of
 b

un
ch

es

-3 -2 -1 0 1 2 3 4
0

10

20

30

40

50

60

Bunch charge at injection (%)

N
um

be
r

of
 b

un
ch

es

Incoherent bunch current jitter Fermilab Proton Driver

Detuning

Another source of beam jitter is the cavity detuning as a result of

Lorentz-forces and micro-phonics. The figure below shows an example
of the random variation of the slow micro-phonics detuning in all
cavities during one pulse. The fast microphonics variation, which is
calculated from a similar distribution, is added to the spectrum below
during every time step. The other plot shows the Lorentz-detuning
calculated in all cavities at nominal field, clearly showing the fixed and
random components. Unlike the micro-phonics distribution, the Lorentz-
detuning distribution is invariant throughout the pulse. It is also
changing in time, however, as the field amplitude changes in the
cavities.

 S.C.R.E.A.M program guide

 5-13

0 50 100 150 200 250 300 350 400
-40

-30

-20

-10

0

10

20

30

No of cavity

M
ic

ro
ph

on
ic

s
de

tu
ni

ng
 (

H
z)

Random Generated Distribution of Microphonics over Cavities
in Fermilabs Proton Driver

Shown below is the detuning frequency (Hz) in all βc=1 cavities

during a pulse (output parameter cavpre.dw). The estimated Lorentz-
detuning in the βc=1 section at 25 MV is -600 Hz. The cavity detuning
continues after filling (complete after 500 µsec) because of the
mechanical inertia of the cavity (see discussion in section 4/detuning).
The Lorentz pre-setting is ~4000/(2π) Hz. In the βc=0.47 group the
estimated Lorentz-detuning at ~7MV=-600Hz. In the βc=0.61 group
the estimated Lorentz-detuning at ~10MV=-600Hz. In the βc=0.81
group the estimated Lorentz-detuning at ~18 MV = -300 Hz. The fine
ripple is (fast and slow) microphonics detuning (10 Hz, HWHM). The
figure below shows the detuning profile for all cavities in the βc=1
sector. The fact that the detuning becomes almost zero toward the end
of the pulse indicates that the pre-detuning works successfully. Note
the spread in the pre-detuning frequencies at t=0! This spread is
introduced in the scream.m script to take into account the random

 S.C.R.E.A.M program guide

 5-14

variation of the detuning constants between cavities. This refinement
in the pre-detuning is the reason why the spread is reduced at the end
of the pulse.

Run without Phaseloop

The following shows an example of a pulse simulation without phase-

shifters. As is obvious from the graph below, which shows the beam
current (CCur, amplitude and phase) in the last cavity, the beam does
not survive longer than ~50 micro-sec in this condition. The beam
phase starts to increase with respect to the synchronous phase (per
definition zero), and the current amplitude starts to drop from the
nominal 25 mA. The strong phase oscillations after the beam is lost
are the result of numerical noise (division through almost zero
amplitude).

The CCur field constains the sum of the macro-particle currents

multiplied with the transit time factors for each macro-particle and a
phase-factor containing the phase difference froim each macro-particle
to the synchronous particle. The CCur array has the dimension
NcavxNb. The amplitude of CCur therefore essentially is the bunch
current for bunches that are running close to the synchronous bunch.
When strong deviations from the synchronous phase occur the phase
angle increases and the amplitude of CCur drops because of the
reduction in transit-time factor. The abovce shown CCur function
therefore indicates how well the matching of the bunch and
synchronous phase is.

 S.C.R.E.A.M program guide

 5-15

The cause of the current drop is field instability in the low beta
modules. Shown below is the field amplitude in all cavities as a
function of time. On the left are the set-values, on the right, the actual
values. The actual amplitudes depart from the set-values, as a result
of beam-loading and detuning as well as the insufficient regulation
ability by the vector-sum control system. In the plot below only the
βc=1 section with voltages ~25 MV are well behaved. The fields are
unstable in the βc<1 sections, and most notably in the βc=0.47
module.

Shown below are the amplitudes and phases (CField) in the first 16

cavities (first module) as function of time. The plot clearly shows that
the cavity fields start to depart from nominal after ~50 µsecs of beam
loading, in some cases even earlier. The vector-sum feedback control

 S.C.R.E.A.M program guide

 5-16

system is not capable of stabilizing the fields sufficiently. Note that
reduction in cavity voltage as a result of a phase change α goes with
cos(α), thus 20° corresponds to ~10% of loss in amplitude.

The following figures show the phases of the cavity fields. On the left

are the actual phases, on the right the phases as averaged over the
modules1. These plots use the same scale. As expected the average
over the module is better behaved by a relative factor G (=feedback,
~25). The next set of figures shows the cavities in the βc=1 sector.
The beam is stiff enough in this sector so that variations in beam-
loading, detuning, etc.. do not induce significant phase oscillations.

Below are the cavities in βc<1 sectors, showing again the instability
discussed above. The instability even appears at the module level.

The location of the linac where strong cavity phase-fluctuations occur
is probably the region where the loss of beam originates. Using the
plot below, which shows the phase difference from the synchronous
phase (angle(CField)) in all cavities at one particular instant in time
(50 µsec after filling), one can argue that the instability originates in
the first 50 cavities, encompassing the βc=0.47, βc=0.61 sections and
some cavities from the βc=0.81 sector.

1 MATLAB code used to obtain average over module:
hold
for n=13:35,
plot((180/pi*sum(angle(cavpre.CField(Mod(n).Cavities,:)))/(Mod(n).N))');
end

 S.C.R.E.A.M program guide

 5-17

Vector-sum Control

The following discusses the dynamics, and in particular the optimal

gain settings of the vector-sum control. Since the vector-sum control
is particularly important in the βc=1 section of the PD, the βc<1
section of the PD linac was removed (Eini0=1336.85 MeV, tini0=0sec)
and the buinches were all made synchronous (Efluc=Ecoh=tfluc-
tcoh=0) for the purpose of the calculations discussed below. Also the
phase-space distribution of the synchronous bunch was strongly
compressed (σt0=1psec,σE0=1keV). No vector-modulators were
implemented.

 S.C.R.E.A.M program guide

 5-18

Shown below is the effect of the feedback gain on the field and phase
of cavity #126 (in module 11, which contains cavities 121-132). To
obtain this plot a special version of scream.m was written, including a
loop over the cavity gains2. For insufficient gain the fields and phases
are very different from their respective set-values. Above the
maximum gain shown in these plots the program becomes unstable.

The following figures show the cavity fields and phases in all cavities
in the 11th βc=1 module, calculated with the most optimal gain (16.5).
We observe that the cavities at the ends of the module have positive
amplitude error with beam, cavity in the center come close to the set
value, while the other cavities inside the module typically have
negative amplitude error.

The TTF in this module, shown below also, indicates an increasing

beam-loading along the module. The TTF is definitely reflected in the
bunch energy-error (below). There are no differences between the
beam phases (w. respect to the synchronous phase) in the different
cavities. of the module. This beam-phase plot is essentially a short
section of the “synchrotron” phase plot discussed in further detail
later. Also an energy error plot for the entire linac will be shown later.

2 for kf=2:20
 SimCav = Cavities;
 SimCav.Feedback = SimCav.Feedback/kf;
 [cavresult(kf),beamresult(kf)]=SimulateField(SimCav,Mod,Bunches,General,Phaseloop);
 end
cr=cavresult;
br=beamresult;

 S.C.R.E.A.M program guide

 5-19

 S.C.R.E.A.M program guide

 5-20

Since vector-sum control works on the average field in the module it
is of interest to verify how successfully it operates on the module level.
A special post-processing code was used to compute the average
complex field-vectors in the module3. As shown in the plot, field
(phase) are controlled to within a few % (<1°) at the module level.
The amplitude set value is the same in all the modules shown. The
perturbation of the cavity phase at the start of beam loading is clearly
visible. Toward the end of the pulse the feedback mechanism brings
the phase almost back to the synchronous phase.

Shown below is the klystron forward power (amplitude and phase,
per cavity). It is calculated from 1e+9 CForwd^2. Strictly speaking it
is not the forward power as defined as the power entering the cavity
coupler, since it does not include the reflected power. During beam
loading, however, the reflection is negligible and the shown plots
indeed show the forward power from the klystron. Also included is the
setvalue (feed-forward component) SForwd. The klystron power during
beam loading is as expected (power transferred to the beam is
~25MVx25mA=625kW). The phase signal (right plot) clealy shows the
Lorentz-force detuning, with the feedback system aiming at matching
the klystron phase to the pre-detuned cavity phase (Lorentz-pre-

3 MFM=zeros(6,1300);
 for i=1:4:24,

MFM(i,:)=zeros(1,1300);
for k=1:12,

MFM(i,:)=MFM(i,:)+cr(3).CField((i-1)*12+k,:);
end

 end
MFM=MFM/12;

 S.C.R.E.A.M program guide

 5-21

detuning) during filling. Since the Lorentz-force detuning diminishes
during filling the feedback finally drives the klystron phase back to
smaller values. The expected phase change is arctan(∆ω/ω12)~10°. The
feed-forward phase setting is zero. As the beam arrives the RF phase
suddenly jumps by ~-10° to take into account the beam phase-
advance (klystron attempts to supply the power at the right phase).

A similar calculation with injection jitter (as defined in the discussion

of the input to this simulation, including the random variations) shows
similar, albeit slightly worse, results. Shown below are the amplitude
and phase in cavity 126 (module 11) for different gain settings. In this
case the highest possible gain setting (17.5) is less successful in
aligning the actual and set-amplitudes and phases. Also the cavity-to-
cavity amplitude and phase-variations within the module, as shown
below, are less constrained than in the case with minimal injection
jitter.

 S.C.R.E.A.M program guide

 5-22

The control signal used by the vector-sum regulation is proportional
to the difference between the actual cavity voltage and the set-
voltage. Since the vector-sum control averages all signals over the
module there is in fact only one signal per module. Furthermore the
signal is multiplied with a gain. The S.C.R.E.A.M output parameter
CForwd contains the amplified feedback signal as well as the
feedforward (SForwd) signal. Multiplied with the average conversion

factor
ljj rQL2 in module l it becomes an equivalent voltage4. Note,

however, that the exact amplitude of this voltage is not necessarily
relevant since it only serves to regulate the cavity voltage to the
nominal value. Since the cavity voltage in the βc=1 section is 25 MV
and the beam current discussed here is 25 mA, the square root of the
forward power (~600 kW with beam) is 25 MV. This is a pure
coincidence, however! Also shown in the following plots is

SForwdx
ljj rQL2 , i.e. the feed-forward signal converted to a voltage.

Ideally the feed-forward voltage should cover most of the voltage that
needs to be supplied to the cavity. Obviously all calculation results

4 MATLAB code for average conversion factor in module:
FieldFac=sqrt(2*Cavities.Qloaded.*Cavities.Rshunt);
for i=1:35,
FieldFacMod(i)=sum(FieldFac(Mod(i).Cavities))/(Mod(i).N);
end
for i=1:1300,
FieldFacModMat(:,i)=FieldFacMod';
end
VForwd=cavpre.CForwd.*FieldFacModMat

 S.C.R.E.A.M program guide

 5-23

discussed above do not include the effect of the fast ferrite vector-
modulator. The following discusses a case with vector-modulators in
the βc<1 sectors.

Run with Phaseloop

The following discusses the result of a successful run using vector-

modulators in the βc<1 sectors of the linac. The beam current and
phase shown below (in the last cavity) indicate a successful run. The
cavity phases at 50 micro-seconds after the end of filling obviously
also indicate a much better behaved βc<1 section than before, without
the vector-modulators. As a result of successful phase-correction in
the βc <1 sectors, the largest phase-variations now occur in the βc =1
sector.

No of cavity

 S.C.R.E.A.M program guide

 5-24

The plot below shows the phases of the βc<1 cavities at different
randomly chosen times during the beam pulse, showing that the
phases are more or less stable throughout the pulse.

The field amplitudes in the βc<1 cavities are also obviously better

behaved than in the case without vector-modulators. Shown are the
amplitudes and phases in all cavities (left) and in the βc<1 cavities
only (right). The klystron forward power in the βc<1 modules are also
shown (amplitude left, phase right) together with the set-values.

 S.C.R.E.A.M program guide

 5-25

Vector-Modulators

The following shows the phase-shift provided by the two arms of the
96 phase-shifters at all times during the pulse (cr.sh1 and cr.sh2).
Except for some outliers the phase signals remain within ±10°. Note,
however, that the phase-shifter implementation discussed here
operates at the ideal working point (π/4). In this working point half of
the klystron power is reflected from the phase-shifter. This is an un-
acceptable situation in a real linac. Better optimized phase-shifter
gains and better (faster) control elements are required to allow
operation around the 0° working point.

 S.C.R.E.A.M program guide

 5-26

The following shows the phase-shifter angles ψ1 and ψ2 in module 2
(βc=0.61). Also shown is the total phaseshift (angle(cr.CFwdpl)).

 S.C.R.E.A.M program guide

 5-27

The following plot shows the amplitude of the vector-modulator
control signal (abs(CFwdpl)). The amplitudes can become larger than
one when the working point ψ0≠0.

The example below summarizes the effect of the different control
signals on the cavity phase (in cavity #1, βc=0.47). The dark blue
curve represents the cavity phase, clearly showing the pre-detuning
that is gradually removed as Lorentz-force detuning kicks in. The
vector-sum control (light blue) drives the klystron phase to negative
values to compensate for the detuning. The fast ferrite vector-
modulator (purple) is doing a similar thing. The resulting cavity phase
is ~0. The arrival of beam appears in the vector-sum control as a
pulse. The fact that the feed-forward signal anticipates beam-loading
can be seen in the vector-sum control signal, which is mostly
unperturbed by the arrival of the beam.

 S.C.R.E.A.M program guide

 5-28

The following discusses a small study of the effect of the phase-
shifter L/R time constant (τps) on the cavity phase-control. Shown
below is a series of plots documenting the cavity phases for τps
constants between 150 and 550 µsec. The top plot shows the phase in
all cavities 50 µsec after beam injection for these different cases. The
two plots below show the phase at all times during the pulse in the
first and last (# 96) cavity of the βc<1 sector for the different time
constants.

Synchrotron Oscillation

The S.C.R.E.A.M simulation also allows determining the synchrotron

oscillation, i.e. the longitudinal oscillation of the bunch with respect to

 S.C.R.E.A.M program guide

 5-29

the synchronous particle. Shown below is the beam-phase
(Angle(CCur)) for some bunches. This phase is per definition with
respect to the synchronous phase. The bunch energy error, ECur,
(with respect to the synchronous bunch), also reflects the synchrotron
motion. The figures below also beautifully demonstrate the Liouville
theorem on the conservation of the beam area in phase-space, with
the phase-oscillation decreasing as the energy amplitude increases.

Beam-Loading

The beam-loading is modulated across the module with the transit
time factor and vector-sum control can only take care of the mean in
the module. Shown below is the amplitude of CCur, which clearly
reveals the modulation with T’ (which is also shown in the plot). The
beam-loading voltage, shown in the right plot for several bunches is
calculated with:

∆Vb=simbeam=IFacxCCur=2πxFrequencyxRshuntx∆tx10-6xe-iφ0xCCur,

where the IFac vector had to be augmented to a matrix consisting of
800 identical column-vectors and the so obtained IFac matrix had to
be multiplied element-wise with the CCur matrix.

 S.C.R.E.A.M program guide

 5-30

Example Case - Conclusions

The simulations discussed above are intended to document the

capabilities of the S.C.R.E.A.M program to simulate RF control
strategies in superconducting linacs, such as the Fermilab PD. The PD
has several specific characteristics, which were addressed in the
version of S.C.R.E.A.M. discussed here. These are related –1- to the
question of RF fan-out and the need for fast ferrite vector-modulators
and –2- to the intended multi-purpose use of the linac for several
particle species (H- and electrons). Both issues require a careful
weigthing of the cost of different technical solutions to the RF controls
problem. To reduce the cost of a linac it is, on the one hand, desirable
to group as many cavity resonators as possible into one RF circuit,
driven by one klystron – modulator unit. The RF phase and amplitude
can only be regulated at the output of the klystron and therefore not
individually for each cavity. Individual phase and amplitude shifters for
each cavity facilitate the optimization of the linac, but they are
expensive. Therefore it is desirable to determine the most cost optimal
compromise between RF fan-out and the number and complexity of
phase shifters. If different beam species are to be accelerated this
optimization must include not only intra-pulse control of the RF phase
and amplitude but also pulse-to-pulse variations. Simulations with
S.C.R.E.A.M as discussed here already indicate that TTF-style
vectorsum control is not sufficient to stabilize the cavity fields in the
βc<1 sections of the PD. In the future further fine-tuning of the control
algorithms is certainly required to achieve the challenging goals for the
final momentum spread (<0.1%), amplitude variation (within <±0.8
dB) and phase variation (<±8 deg). Note that shifting the cavity phase
by the half-bandwidth correspond to a 45 degrees phase-shift!

 S.C.R.E.A.M program guide

 5-31

Shown below is the final beam energy for all 55200 macroparticles
accelerated in one pulse (69x800) as calculated in the version that
includes the fast vector-modulators. In fact the plot shows plot(br.
Time-(prerun.Time(384,1), br.Energy), so the time-axis is relative to
the time of flight of the synchronous particle. It is clear from the plot
that the beam energy in the pulse was ~100 MeV higher than nominal
(and that of the synchronous particle). Some macro-particles bunches
are lagging behind, producing the tail of the distribution. As shown in
the histogram below, however, the tail contains only about 5% of the
macro-particles. The beam loss is obviously even smaller since the lost
macro-particles are mostly from the fringes of the injection phase-
space and therefore hold much less particles. Note that the linac setup
was not optimized for minimum beam loss. The histogram was
produced with special post-processing code5.

5 edgesnew(1)=0;
 for u=2:20,

edgesnew(u)=7900+u*12.5;
 end
 Ehisto=zeros(20,1)
 for v=1:800,
 Ehisto=Ehisto+histc(bmpre.Energy(:,v),edgesnew);
 end
 bar(Ehisto)
 bar(Ehisto/sum(Ehisto))
 bar(100*Ehisto/sum(Ehisto))

 S.C.R.E.A.M – program documentation

 6-1

6 APPENDIX A

CALCULATION OF THE TRANSIT TIME FACTOR

The transit time factor is used to relate the peak (or average or any

other benchmark parameter representing the) accelerating field in the
cavity to the effective acceleration of a beam in that cavity. In a single
cell cavity the transit time factor describes the effect of the sinusoidal
variations of the accelerating field in the cavity as a function of time
and space. It also includes the effect of a mismatch between the
particle velocity and the cavity design beta, which causes a phase
difference between beam and RF fields. In a multi-cell cavity the phase
difference as a result of the beta-mismatch increases gradually, from
cell to cell. Usually the transit time factor is given for the ideal
condition, i.e. for the synchronous particle and therefore does not
include the nominal phase difference between beam and RF used for
gradient focusing as well as the beam phase errors from synchronous.
It also doesn’t describe beam-loading effects.

Shown below is the calculation of the transit time factor for a single

cell cavity in the case in which the cavity-beta equals the beam-beta
(βb=βc). The coordinate system for the calculation was chosen such
that the center of the cell is at z=0. The spatial field distribution in the
cell is described by a cosine function with nodes at the entrance and
exit from the cell. The field is highest in z=0 at t=0 when the cosωRFt
function peaks. As shown below the (normalized) transit time factor
for the synchronous particle at speed c in a β=1 type cavity in the π-
mode is 0.5. That means that in the best case the particle sees an
accelerating voltage of 0.5EmaxLc as it crosses the cell of length Lc,
where Emax is the cavity peak electric field.

()

()[] ()[]
2
1

2
coscos1,

cos1
2

coscos1

2

2

2
2

2

2

2

2

2
2

2

===→===→

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==→

==

=
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∫∫

∫∫

+

−

+

−

+

−

+

−

π
ππ

π

ππωππω
πω

π

π

π

π

dxxdxxdx
L

dzz
L

x

dz
L
z

LL
zt

L
cf

c
zt

dzz
L

t
L

T

c

c

L

L ccc
RF

c
RFRF

L

L c
RF

c

c

c

c

c

 (A-1)

A similar derivation can be obtained for the more general case when
the beam βb and cavity βc are different. Again the calculation is
performed in only one cell:

 S.C.R.E.A.M – program documentation

 6-2

()

dzz
L

z
LL

dzz
L

z
LL

cT
L

L
z

c
zt

dzz
L

t
L

T

c

c

c

c

c

c

L

L cccb

c

L

L cbc

c

c

RF

cRFc
c

bc

c

b
RFRF

L

L c
RF

c

∫∫

∫

+

−

+

−

+

−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=≡=⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=
==

==
=⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

2

2

2

2

2

coscos1coscos1

2

coscos1

παπ
β
β

απ
β

πβ

ϖ
πββ

β
πβ

βϖϖ
πω

() ()[]

() () () ()[][]

() ()

() () =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
−

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

====
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−+

+

=====⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−−

+

−−

+

−
−

+

−

+

−

∫

∫

∫∫

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1sin
1

sincos
1
1

1cossincos
1
1

,1cossincos
1
1

coscos1,coscos1

c

c

c

c

c

c

c

c

c

c

L

Lc

L

Lcc

L

L cc

L

Lcc

cc

c

c

L

L ccc

z
L

z
L

z
L

dzz
LL

z
L

z
L

dz
L

dxz
L

xdxxxx

dxxxdx
L

dzxz
L

dzz
L

z
LL

πα
α

απαπ
απ

πααππαπ
απ

ππααα
απ

α
ππ

ππαπ

π

π

π

π

π

π

() ()
()

()()

()
()

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=⇒==
−

=

=
−+

=⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡ −

−
+⎟

⎠
⎞

⎜
⎝
⎛

+
=

22

1

2
cos2

1
2cos2

11
2cos2

2
1sin

1
2

2
cos2

1
1

b

c

b

c

b

c T

β
β

π

β
βπ

β
β

α
απ

πα

ααπ

παπα
α

ααπ
απ

 (A-2)

The transit time function as calculated above, unfortunately cannot
be implemented in a computer program because it generates a
singularity for βc=βb instead of producing 0.5. A calculation using de
L’Hopital’s rule would produce the expected value. In the S.C.R.E.A.M
code, however, the cos-term was Taylor expanded to prevent this
problem. First the cos term was transformed into a sin term to allow
for a Taylor expansion around zero. This trick automatically yields

 S.C.R.E.A.M – program documentation

 6-3

series terms canceling against the denominator, thus removing the
singularity.

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

=++−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

K

K

5

5

53

3

3

53
22

1
2!5

1
2!3

1
2

11

2

120
1

6
1

1

1
2

sin2

1

2
cos2

b

c

b

c

b

c

b

c

b

c

b

c

b

c

b

c

b

c

xxxT

β
βπ

β
βπ

β
βπ

β
β

β
β

π

β
β

π

β
βπ

β
β

π

β
βπ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

≈ K

4422

1
1920

1
24

1
1

1

b

c

b

c

b

c

T
β
βπ

β
βπ

β
β

 (A-3)

Figure 6-1 shows a comparison of T calculated with the approximation
(A-3) and with the exact calculation using (A-2).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.5 0.6 0.7 0.8 0.9 1
beam beta

Tr
an

si
t t

im
e

fa
ct

or
 fo

r s
yn

ch
ro

no
us

 p
ar

tic
le beta=0.55

poly 0.55
beta=0.75
poly 0.75
beta=0.95
poly 0.95

Figure 6-1: Ideal transit time factor for the synchronous particle of varying beta in single cell
cavities with different betas: complete model (Eq. A-2) and polynomial approximation (Eq. A-3).

 S.C.R.E.A.M – program documentation

 6-4

To use (A-3) in the calculation of T in the multi-cell cavity, it is
necessary to prove that the phase difference, which appears after one
cell (and accumulates from cell to cell) due to the β−mismatch, can be
extracted from the transit-time-factor integral. Also, the procedure
used in the program requires that the non-synchronous particle can be
simulated on the basis of the transit time factor of the synchronous
particle. That requires that the phase factor be extracted from the
transit time factor integral at any stage of the calculation. The
following repeats the above calculation, except that an additional
phase factor ∆φ is introduced into the argument of the cosωt function.

() ()
() () () ()

() () () ()∫∫

∫

+

−

+

−

+

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆=

=
∆−∆

=∆+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆+=

2

2

2

2

2

2

cossinsin1coscoscos1

sinsincoscos
cos

coscos1

c

c

c

c

c

c

L

L c
RF

c

L

L c
RF

c

RFRF

RF

L

L c
RF

c

dzz
L

t
L

dzz
L

t
L

tt
t

dzz
L

t
L

T

πωφπωφ

φωφω
φωπφω

 (A-4)

The first integral above corresponds to the phase-free transit time
factor as calculated above in (A-2). As will be shown below the second
integral on the right is zero.

dzz
L

z
L

z
L

z
L

L

partialdzz
L

z
L

c

L

L c

L

Lcc

c

L

L cc

c

c

c

c

c

c

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

==
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∫

∫

+

−

+

−

+

−

παπαπαπ
π

ππα

cossinsinsin

intcossin

2

2

2

2

2

2

 (A-4’)

The first term above integrates to zero. The integral can be
transformed with:

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎥

⎦

⎤
⎢
⎣

⎡
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
z

L
z

L
z

L
z

L
z

L ccccc

παπαππαπ sincos1sincossin ,

 (A-4’’)

 S.C.R.E.A.M – program documentation

 6-5

which includes the original integral. Thus the following transformation
can be made:

() 01sin
1

cossin
2

2

2

2

=⎥
⎦

⎤
⎢
⎣

⎡
+

−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∫∫

+

−

+

−

c

c

c

c

L

L c

L

L cc

dzz
L

dzz
L

z
L

απ
α

αππα

 (A-4’’’)

The sin function integrates out to zero. Thus it can be concluded that:

() ()bcbc TT ββφφββ ,cos),,(∆=∆ (A-5)

To generalize the transit time factor to Nc cells the phase difference

accumulated by a particle in the course of its travel from the middle of
one cell to the middle of the next cell needs to be taken into account.

()rad
c

L

b

c

b

c

b

c
RF π

β
β

β
β

ππ
β

ωπφ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=−=∆ 1 (A-6)

The above phase difference also takes into account that neighboring
cells are generally operated with a phase difference of π (in the π-
mode). Furthermore, a convention needs to be made regarding the
reference position, i.e. the location in the multi-cell cavity where the
phase is arbitrarily set to zero. In S.C.R.E.A.M the reference point lies
exactly in the middle of the cavity, coinciding with the middle of the
middle cell for the case of an odd number of cells and in the middle
between two center cells when the number of cells is even.

Taking into account (A-5), the multi-cell transit time factor can be
written as:

() () ()∑∑
−

=
−

−=

−
=

−
−=

∆=∆= 2
1

2
1

2
1

2
1 cos

,
,,1 Nk

Nk
c

bc
Nk

Nk
kbc

c

k
N

T
T

N
T φ

ββ
φββ , (A-7)

such that the calculation can be reduced to the solution of the sum on
the right side since T(βc,βb) is known from (A-2). Since the transit time
factor here is defined for the complete cavity (and it is multiplied with
the average cavity field in subsequent stages of the program) it needs
to be divided by the number of cells, Nc. The sum can be solved when
transformed into a geometrical series. For that (and to simplify the re-

 S.C.R.E.A.M – program documentation

 6-6

arrangement of the sum terms) it is of advantage to switch to complex
exponentials.

() ()

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
⎟
⎠
⎞

⎜
⎝
⎛ ∆

⎟
⎠
⎞

⎜
⎝
⎛ ∆

=

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−
+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=

=
−
−

==+=

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+=+=∆

∆∆
−

∆∆
−

∆
−

∆

∆
−

∆

∆−

∆−∆
−

∆

∆∆
−

−

−

=

−

=

∆−∆
−−

=

∆∆
−

−

−
=

−
−=

−

=

∆⎟
⎠
⎞

⎜
⎝
⎛ −

−−∆⎟
⎠
⎞

⎜
⎝
⎛ −

−
∆−∆

−
=

−
−=

∑∑∑

∑ ∑∑

b

c

b

cc

ii

NiNi

ii

NiNi

i

iNNi

i

iNNi

NN

n

n
N

k

ik
NiN

k

ik
Ni

Nk
Nk

N

k

NkiNki
ikik

Nk
Nk

NN

ee

ee

ee

ee
e
ee

e
ee

q
qqeeee

eeeek

β
βπ

β
βπ

φ

φ

φ

φφ

φφ

φφ

φφ

φ

φφ

φ

φφ

φφφφ

φφ
φφ

1
2

sin

1
2

sin

2
sin

2
sin

2
1

2
1

1
1

2
1

1
1

2
1

1
1

2
1

2
1

2
1

2
1cos

22

22

22

22
2

1
2

1

1

0

1

0'

'2
11

0'

'2
1

2
1

2
1

1

0'

2
1'

2
1'

2
1

2
1

 (A-8)

(A-8) can now be multiplied with (A-2) or (A-3) to give the total transit
time factor:

()

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=

=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

b

c
c

b

cc

b

c

b

c

b

c

b

c
c

b

cc

b

c

b

c

ccb

N

N

N

N

NT

β
βπ

β
βπ

β
β

β
βπ

β
βπ

β
βπ

β
βπ

β
β

π

β
βπ

ββ

1
2

sin

1
2

sin

1

1
1920

1
24

1

1
2

sin

1
2

sin

1

2
cos2

,,

4422

2

 (A-9)

The transit time factor according to (A-9) is the total transit time
factor of the cavity and it assumes that the cavities operate in the π-
mode and that the cavity cell length corresponds exactly to half the RF
wavelength. The second term which contains the multi-cell effect also
has a singularity at βc=βb. This singularity needs to be addressed in the
program.

 S.C.R.E.A.M – program documentation

 6-7

Figure 6-2 is a plot of the multi-cell cavity transit factor. It clearly
shows that the introduction of many cells strongly reduces the
operational window in terms of beam beta. The single cell transit time
factor can be reached only in the case βc=βb.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.5 0.6 0.7 0.8 0.9 1
beam beta

Tr
an

si
t t

im
e

fa
ct

or
 fo

r
sy

nc
hr

on
ou

s
pa

rti
cl

e
in

 9
-c

el
l c

av
ity

poly 0.55
9-cell 0.55
poly 0.75
9-cell 0.75
poly 0.95
9-cell 0.95

Figure 6-2: Ideal transit time factor for the synchronous particle of varying beta in 9-cell cavities
with different betas according to equ. (A-9) The single cell transit time factor is shown as well
(dashed lines).

Note that the calculation of the transit time factor introduced above

also supposes that the axial field profile in the cavity cell is sinusoidal.
Especially in low beta cavities this is not necessarily the case. The
program therefore uses a trick to take into account variations in the
cavity designs across the range of betas. In the case of β=1 cavities
the above assumptions regarding the cavity shape and a sinusoidal
field profile hold. If normalized to one (dividing the above term by ½)
for the case of βc=βb=1, the transit time factor can be applied also to
the calculation of the total effective accelerating voltage per cavity in
cavities of different designs if it is multiplied to the average
accelerating voltage across the cell as calculated by electromagnetic
design programs. With this approach the relative transit time factor is
used to describe the effect of the mismatch between cavity β and
beam β, while the information on the particular field profile is included
in the average voltage (that a perfectly matched particle would see) as

 S.C.R.E.A.M – program documentation

 6-8

obtained, for instance, from a FE model calculation of the particular
cavity design.

The gap-factor (Lc/λ - Lc the cell length, λ the RF wave-length) is not
considered in Eq.(A-9) because it is implicit in the above calculation of
the TTF (Lc/λ =1/2)).

The total effective accelerating voltage seen by the particle in a cell
of an accelerating cavity is then

() () () ()VdzzV
L

VNTVV
c

c

L

Lc
cbceff ∫

−

=⋅⋅=
2

2

1cos,,~
Kφββ , (A-10)

where the transit time factor T~ is given by (A-9) (normalized by
multiplication with 2), the average accelerating voltage V per cell is
obtained from electromagnetic cavity design codes and φ is the relative
phase of the particle to the phase of the synchronous particle. The
normalized transit time factor, T~ , is calculated in the program input
sheet.

The program does not include dynamic effects such as:
• the change of particle speed within a cavity
• beam loading in the cavity

 S.C.R.E.A.M – program documentation

 6-9

7 APPENDIX B

DERIVATION OF THE CAVITY VOLTAGE

Figure 6-3 shows the equivalent circuit of a driven cavity with beam

Ib=beam current). The schematic indicates possible reflection by the
reflective voltage Ur. The shunt impedance Rs (=RL) is also shown.
The Kirchhoff-equations to solve for the circuit described in the figure
are given next (B-1). The input parameters on the RF power generator
side have been transformed to the cavity side.

RL Vb

If

Vf

Vr
Ib

RL Vb

If

Vf

Vr
Ib

Figure 6-3: Equivalent circuit of cavity operated with beam.

Eq. (B-1) gives the voltage across the cavity, where RL is the sum of

the coupling losses and the wall losses in the cavity. To obtain
optimum coupling with beam, however, cavities need to be over-
coupled such that optimum matching occurs in the presence of beam.
In the over-coupled case the coupling losses strongly dominate the
wall losses: QL<<Q0, Rext>>R0. The loaded shunt impedance in the

strongly over-coupled limit therefore is ()Ω==≈ LLextL rQQ
Q
RRR

0

.

⎟
⎠
⎞

⎜
⎝
⎛−=++

s
AIIV

L
V

R
VC bf

L

&&&&& 11
 (B-1)

With the half-width ω1/2 and resonance frequency ω0:

()Hzrad
LCQCR LL

−===
1

22
1 2

0
0

21 ω
ω

ω / (B-2)

Eq. (B-1) can be rewritten:

 S.C.R.E.A.M – program documentation

 6-10

() ⎟
⎠
⎞

⎜
⎝
⎛−=++ 221

2
021 22

s
VIIRVVV bfL

&&&&&
// ωωω (B-1)’

In Eq. (B-1)’ the additional assumption was made that the forward
current is half the generator current. This factor takes into account the
total reflection occurring at the cavity input when the cavity is not
matched (which is typically the case when there is no beam). This
factor 2 essentially takes into account that the voltage at the cavity
entrance is two times the desired voltage, as a result of almost total
reflection at the input. The almost negligible fraction of power that
enters the unmatched cavity and fills it will ultimately establish this
double voltage in the cavity.

The voltage can be approximated with Eq. (B-3), as being composed of
a high frequency component eiwt and an envelope component that
slowly varies in time. Eq. (B-3) assumes a general cavity resonance
frequency, ω, that could very well be different from ω0.

() ()VetVV tiω)
= (B-3)

The same applies to the currents. Inserting the complex voltages into

(B-1)’, and assuming 021 ~, / VV
)
&

)
&& ω (the voltage varies only very slowly,

the cavity bandwidth is very small) gives Eq. (B-4). (B-4) also
assumes that the time derivatives of the current are zero. Strictly
speaking this assumption is only valid in steady state, long after RF
power was switched on.

() ⎟
⎠
⎞

⎜
⎝
⎛−=

−
++

s
VIIRV

i
VV bfL

)))))
& 2

2 21

22
0

21 // ω
ω
ωω

ω (B-4)

Defining the detuning frequency ∆ω=ω0−ω and assuming ∆ω to be small,
Eq. (B-4) becomes:

() () ⎟
⎠
⎞

⎜
⎝
⎛−+∆−−=

s
VIIRViV bfL

))))
& 22121 // ωωω (B-5)

This can also be written in a more compact form, where the current
term includes forward and beam current:

() ⎟
⎠
⎞

⎜
⎝
⎛+∆−−=

sec
MVIRFrViV

))&) ωωω
2
112 (B-5b)

 S.C.R.E.A.M – program documentation

 6-11

Eq. (B-5) is the basic equation describing the field changes in the
cavity, which are slow compared to the RF field. The solution of Eq. (B-
5) is at the basis of the cavity voltage calculation used in S.C.R.E.A.M.

The filling function, for instance, can be calculated from (B-5) setting
the beam current to zero. Building a solution from the homogenous
and inhomogeneous version of (B-5), one obtains

() ()[] ()Ve
i

IR
tV tifL ωω

ω
ω

∆−−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
−

= 211
1

2

21

/

/

)
)

 (B-6)

where the first term represents the to voltage to which the filling
process tends asymptotically. In the case ∆ω=0, the ultimate voltage is
Vend=2RLIf. This is the result of complete power reflection at the un-
matched cavity! Without detuning, the voltage rises exponentially with
the filling time constant τ=1/ω1/2. In the case in which ∆ω≠0 the
complex voltage performs rotations in phase-space, spiraling toward
the end value 2RLIf(1-(∆ω/ ω1/2)2) which is always smaller than the
ideal value. The detuning factor in the denominator, which describes
the reactive component of the cavity impedance in the detuned case,
is responsible for this.

Instead of the forward current it is more practical to use the forward
power. Forward current and power are related through:

()WIR
R
V

R
V

IRIRP bL
beam

c

ext

c
fLfextf

2
22

22

2
1

2
1

2
1

2
1

2
1)))

===≈= (B-7)

when beam (Ib is present).

Instead of solving Eq. B-5 with beam current, the program calculates
the beam-loading separately. The voltage reduction, ∆V, in the cavity
due to the bunch wakefield can be derived from an energy balance.

()
tIrVqV

r
VV

r
V

UU b
after
tot

before
tot ∆≈∆⇒+

∆−
== ω

ωω 0

2
0

2
0

22
, (B-8)

Eq. (B-8) assumes that the beam loading effect is small (∆V<<V0),

so that O(∆V2) terms can be omitted and the V0q is approximately the
energy taken out from the cavity by the beam. The bunch charge was
replaced by q=Ib∆t in the final expression. The beam-loading

 S.C.R.E.A.M – program documentation

 6-12

expression in Eq. (4-12) also includes the transit time factor T’ (<1),
which actually reduces the cavity V0 as well as ∆V.

 S.C.R.E.A.M – program documentation

 6-13

8 APPENDIX C

Scream.m

% SCREAM
% SuperConducting RElativistic particle Accelerator siMulation
% written 2003 by M. Huening (mhuening@fnal.gov)
% version 0.1
%

if ~exist('debugging','var'), debugging=0;end

LoadInput;
PreRun;
if debugging==1, return;end

SimCav = Cavities;
SimCav.KLorentz =
SimCav.KLorentz.*(1+SimCav.Kspread.*randn(size(SimCav.Kspread)));

SimCav.dw = SimCav.dw-2*pi*SimCav.Amplitude.^2.*(SimCav.KLorentz-
Cavities.KLorentz);
[cavpre,bmpre] = SimulateField(SimCav,Mod,Bunches,General,Phaseloop);
if debugging==2, return;end

save([datadirectory,'/preresults'],'prerun','cavpre','bmpre','Cavities'
,'Mod','Bunches','General');
if debugging==3, return;end

block_cav_save_count=0;

for kf=1:Nfiles
 SimCav = Cavities;
 SimCav.KLorentz =
SimCav.KLorentz.*(1+SimCav.Kspread.*randn(size(SimCav.Kspread)));
 SimCav.dw = SimCav.dw-
2*pi*SimCav.Amplitude.^2.*(SimCav.KLorentz-Cavities.KLorentz);
 for kr=1:Nruns

[cavresult(kr),beamresult(kr)]=SimulateField(SimCav,Mod,Bunches,General
,Phaseloop);
 end

save([datadirectory,'/beamresults',num2str(kf,'%03d')],'beamresult','Si
mCav');
 block_cav_save_count=block_cav_save_count+1;
 if block_cav_save_count>block_cav_save,
 save([datadirectory,'/cavresults',num2str(kf,'%03d')],'cavresult');
 block_cav_save_count=0;
 end
end

cr=cavresult;
br=beamresult;

 S.C.R.E.A.M – program documentation

 6-14

LoadInput.m

% Proton Driver Simulation Load Input File
% Written by M. Huening
% mhuening@fnal.gov
%

if ~exist('datadirectory','var'), datadirectory='run0data';end
if ~exist('linacfile','var'), linacfile='linac.csv';end
fid = fopen([datadirectory,'/',linacfile],'r');

while 1,

 tline = fgetl(fid);
 % end of file reached
 if tline==-1, break;end
 % omit quotes
 tline = tline(tline~='"');
 % parse arrays
 if tline(1) == '{',

 varname = tline(2:min(find(tline==','))-1);
 fieldnames = fgetl(fid);
 % end of file reached
 if fieldnames==-1,break;end
 % no quotes but add ',' at the end (for easier analysis
 fieldnames = [fieldnames(fieldnames~='"'),','];
 % discard comments
 if any(fieldnames=='%')
 fieldnames=fieldnames(1:min(find(fieldnames=='%'))-1);
 end
 % find the commas
 commas=find(fieldnames==',');
 % take only those who actually separate something
 commas=commas(1:max(find(diff(commas)>1))+1);
 lc=1;
 fieldcell=cell(length(commas),1);
 for kc=1:length(commas)
 fieldcell{kc}=fieldnames(lc:commas(kc)-1);
 lc=commas(kc)+1;
 end
 tline=fgetl(fid);
 A=[];
 while (tline(1)~='}')&(tline~=-1),
 A=[A;sscanf(tline,'%f,')'];
 tline=fgetl(fid);
 tline=tline(tline~='"');
 end
 tmpstruct=struct('name',varname);
 for kc=1:length(fieldcell)
 tmpstruct=setfield(tmpstruct,fieldcell{kc},A(:,kc));
 end
 eval([varname,'=tmpstruct;']);
 else % execute command in tline
 eval(tline);
 end

 S.C.R.E.A.M – program documentation

 6-15

 end;
 fclose(fid);

NMod = max(Cavities.Module);
NCav = length(Cavities.Module);

%Mod=struct([]); Had to comment that out, otherwise it wouldn't run, PB
0305
for k=NMod:-1:1
 Mod(k).Cavities = find(Cavities.Module(:)==k)';
 Mod(k).N = length(Mod(k).Cavities);
 Mod(k).Feedback = mean(Cavities.Feedback(Cavities.Module==k));
end

if isfield(Cavities,'FillOff'),
 for k=1:NMod
 Mod(k).FillOff = mean(Cavities.FillOff(Mod(k).Cavities));
 end
end

if exist('Phaseloop','var'),
 if isstruct(Phaseloop),
 General.doPhaseloop=any(Phaseloop.Gain);
 end
else
 Phaseloop=[];
 General.doPhaseloop=false;
end;

Cavities.Phase = Cavities.Phase*pi/180;
Cavities.Module = int32(Cavities.Module);

Cavities.Feedback=Cavities.Feedback...
 ./cellfun('length',{Mod(Cavities.Module).Cavities})';

if ~isfield(Cavities,'KLorentz'),
 Cavities.KLorentz = -1*ones(size(Cavities.Frequency));end
if ~isfield(Cavities,'Kspread'),
 Cavities.Kspread = 0.1*ones(size(Cavities.Frequency));end
if ~isfield(Cavities,'Atten'),
 Cavities.Atten = ones(size(Cavities.Amplitude));end
if ~isfield(Cavities,'FillOff'),
 Cavities.FillOff = zeros(size(Cav.Amplitude));end
if ~isfield(Cavities,'FillTau'),
 Cavities.FillTau=Cavities.Qloaded./Cavities.Frequency/pi;end
if ~isfield(Cavities,'FillTaylor'),
 Cavities.FillTaylor = ones(size(Cavities.Amplitude));end
if ~isfield(Cavities,'ReactiveAmp'),
 Cavities.ReactiveAmp = zeros(size(Cavities.Amplitude));end
if ~isfield(Cavities,'ReactivePhase'),
 Cavities.Reactive = Cavities.ReactiveAmp;
else
 Cavities.Reactive =
Cavities.ReactiveAmp.*exp(i*Cavities.ReactivePhase);
end

 S.C.R.E.A.M – program documentation

 6-16

if ~exist('block_cav_save','var'),
 block_cav_save=0;end

Prerun.m

Pilot.Energy = Bunches.Energy(1);
Pilot.Time = 0;
Pilot.Mass = Bunches.Mass(1);
Pilot.Charge = Bunches.Charge(1);
Pilot.N=1;
Pilot.I=1;

ar=acceleration(Cavities,Pilot,Cavities.Amplitude);
Cavities.Time = ar.Time;
Cavities.Egain = diff([Pilot.Energy;ar.Energy(:)]);
Cavities.TTF = ar.TTF;

prerun = acceleration(Cavities,Bunches,Cavities.Amplitude);

prerun.dt = prerun.Time-prerun.Time(:,1)*ones(1,size(prerun.Time,2));
prerun.de = prerun.Energy-
prerun.Energy(:,1)*ones(1,size(prerun.Energy,2));

Acceleration.c

#include <mex.h>
#include <math.h>

break
const double MH_PI = 3.1415296;
const double MH_CVAC = 2.9979e8;

/* transit time factor */
double ttf(double beta, int n);

double *Beta, *GapLambda, *NCells, *Mode;

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray
*prhs[])
{
 double *Position, *BeamTime, *Fieldr, *Fieldi;
 double *PhSync, *Frequency;
 double *Energy, *Time, *TTF;
 double *Energy0,*Time0;
 double *Mass, *Charge;

 mxArray *FieldTmp;
 mxArray *PhaseIn, *AmplIn, *EnergyIn, *TimeIn;
 mxArray *EnergyField, *TimeField, *TTFField;

 int M, N, MM, NN;
 int Ncav, Nbunch, Nrun;
 int k, ncav, nbunch;

 S.C.R.E.A.M – program documentation

 6-17

 Position = NULL;
 BeamTime = NULL;

 Beta = NULL;
 GapLambda = NULL;
 NCells = NULL;
 Mode = NULL;

 Energy = NULL;
 Time = NULL;

 if(nrhs !=3)
 mexErrMsgTxt("Wrong number of inputs!");
 if(nlhs >1)
 mexErrMsgTxt("Wrong number of outputs!");
 if(!mxIsStruct(prhs[0]))
 mexErrMsgTxt("Input 0 has to be struct!");
 if(!mxIsStruct(prhs[1]))
 mexErrMsgTxt("Input 1 has to be struct!");

 FieldTmp = mxGetField(prhs[0],0,"Position");
 if(!FieldTmp)
 mexErrMsgTxt("Error reading field >>Position<<");
 M = mxGetM(FieldTmp);
 N = mxGetN(FieldTmp);
 Position = (double*)mxGetData(FieldTmp);

 FieldTmp = mxGetField(prhs[0],0,"Time");
 if(!FieldTmp)
 mexErrMsgTxt("Error reading field >>Time<<");
 if(mxGetM(FieldTmp)!=M||mxGetN(FieldTmp)!=N)
 mexErrMsgTxt("All cavity sub fields must have equal size!");
 BeamTime = (double*)mxGetData(FieldTmp);

 FieldTmp = mxGetField(prhs[0],0,"Frequency");
 if(!FieldTmp)
 mexErrMsgTxt("Error reading field >>Frequency<<");
 if(mxGetM(FieldTmp)!=M||mxGetN(FieldTmp)!=N)
 mexErrMsgTxt("All cavity sub fields must have equal size!");
 Frequency = (double*)mxGetData(FieldTmp);

 FieldTmp = mxGetField(prhs[0],0,"Phase");
 if(!FieldTmp)
 mexErrMsgTxt("Error reading field >>Phase<<");
 if(mxGetM(FieldTmp)!=M||mxGetN(FieldTmp)!=N)
 mexErrMsgTxt("All cavity sub fields must have equal size!");
 PhSync = (double*)mxGetData(FieldTmp);

 FieldTmp = mxGetField(prhs[0],0,"Beta");
 if(!FieldTmp)
 mexErrMsgTxt("Error reading field >>Beta<<");
 if(mxGetM(FieldTmp)!=M||mxGetN(FieldTmp)!=N)
 mexErrMsgTxt("All cavity sub fields must have equal size!");
 Beta = (double*)mxGetData(FieldTmp);

 S.C.R.E.A.M – program documentation

 6-18

 FieldTmp = mxGetField(prhs[0],0,"GapLambda");
 if(!FieldTmp)
 mexErrMsgTxt("Error reading field >>GapLambda<<");
 if(mxGetM(FieldTmp)!=M||mxGetN(FieldTmp)!=N)
 mexErrMsgTxt("All cavity sub fields must have equal size!");
 GapLambda = (double*)mxGetData(FieldTmp);

 FieldTmp = mxGetField(prhs[0],0,"Cells");
 if(!FieldTmp)
 mexErrMsgTxt("Error reading field >>Cells<<");
 if(mxGetM(FieldTmp)!=M||mxGetN(FieldTmp)!=N)
 mexErrMsgTxt("All cavity sub fields must have equal size!");
 NCells = (double*)mxGetData(FieldTmp);

 FieldTmp = mxGetField(prhs[0],0,"Mode");
 if(!FieldTmp)
 mexErrMsgTxt("Error reading field >>Mode<<");
 if(mxGetM(FieldTmp)!=M||mxGetN(FieldTmp)!=N)
 mexErrMsgTxt("All cavity sub fields must have equal size!");
 Mode = (double*)mxGetData(FieldTmp);

 if(mxGetM(prhs[2])!=M||mxGetN(prhs[2])!=N)
 mexErrMsgTxt("Field information must have same size as Cavity
Fields!");
 Fieldr = mxGetPr(prhs[2]);
 if(!mxIsComplex(prhs[2]))
 Fieldi=mxGetPr(mxCreateDoubleMatrix(M,N,mxREAL));
 else
 Fieldi = mxGetPi(prhs[2]);
 if(!Fieldi) mexErrMsgTxt("Oops!");

 if(M>N){
 if(N>1)
 mexErrMsgTxt("cavity data may only have one dimension");
 Ncav = M;
 }
 else{
 if(M>1)
 mexErrMsgTxt("cavity data may only have one dimension");
 Ncav = N;
 }

 EnergyIn = mxGetField(prhs[1],0,"Energy");
 if(!EnergyIn)
 mexErrMsgTxt("Error reading field >>Energy<<");
 MM = mxGetM(EnergyIn);
 NN = mxGetN(EnergyIn);
 Energy0 = (double*)mxGetData(EnergyIn);

 TimeIn = mxGetField(prhs[1],0,"Time");
 if(!TimeIn)
 mexErrMsgTxt("Error reading field >>Time<<");
 if(mxGetM(TimeIn)!=MM||mxGetN(TimeIn)!=NN)
 mexErrMsgTxt("All bunch sub fields must have equal size!");
 Time0 = (double*)mxGetData(TimeIn);

 FieldTmp = mxGetField(prhs[1],0,"Mass");

 S.C.R.E.A.M – program documentation

 6-19

 if(!FieldTmp)
 mexErrMsgTxt("Error reading field >>Mass<<");
 if(mxGetM(FieldTmp)!=MM||mxGetN(FieldTmp)!=NN)
 mexErrMsgTxt("All bunch sub fields must have equal size!");
 Mass = (double*)mxGetData(FieldTmp);

 FieldTmp = mxGetField(prhs[1],0,"Charge");
 if(!FieldTmp)
 mexErrMsgTxt("Error reading field >>Charge<<");
 if(mxGetM(FieldTmp)!=MM||mxGetN(FieldTmp)!=NN)
 mexErrMsgTxt("All bunch sub fields must have equal size!");
 Charge = (double*)mxGetData(FieldTmp);

 if(MM>NN){
 if(NN>1)
 mexErrMsgTxt("bunch data may only have one dimension");
 Nbunch = MM;
 }else{
 if(MM>1)
 mexErrMsgTxt("bunch data may only have one dimension");
 Nbunch = NN;
 }

 EnergyField = mxCreateDoubleMatrix(Ncav,Nbunch,mxREAL);
 TimeField = mxCreateDoubleMatrix(Ncav,Nbunch,mxREAL);
 TTFField = mxCreateDoubleMatrix(Ncav,Nbunch,mxREAL);
 Energy = (double*)mxGetData(EnergyField);
 Time = (double*)mxGetData(TimeField);
 TTF = (double*)mxGetData(TTFField);

 if(!Energy||!Time)
 mexErrMsgTxt("Something went wrong.");

 plhs[0] = mxCreateStructMatrix(1,1,0,NULL);
 mxAddField(plhs[0],"Energy");
 mxSetFieldByNumber(plhs[0],0,0,EnergyField);
 mxAddField(plhs[0],"Time");
 mxSetFieldByNumber(plhs[0],0,1,TimeField);
 mxAddField(plhs[0],"TTF");
 mxSetFieldByNumber(plhs[0],0,2,TTFField);

 for(nbunch=0;nbunch<Nbunch;nbunch++)
 {
 double ta, ea, pa, ba, ga ,ma, ph;
 pa = 0; /* bunch position */
 ta = Time0[nbunch]; /* arrival time */
 ea = Energy0[nbunch]; /* actual energy */
 ma = Mass[nbunch]; /* particle mass */
 ga = 1+ea/ma; /* gamma */
 ba = sqrt(1-1/ga/ga); /* beta */
 for(ncav=0;ncav<Ncav;ncav++)
 {
 double de;
 /* calculate arrival time */
 ta = ta+(Position[ncav]-pa)/ba/MH_CVAC;
 pa = Position[ncav];
 Time[nbunch*Ncav+ncav] = ta;

 S.C.R.E.A.M – program documentation

 6-20

 /* convert into phase difference */
 if(BeamTime[ncav]<0)
 ph = 0;
 else
 ph = 2*MH_PI*(BeamTime[ncav]-ta)*Frequency[ncav];
 /* calculate energy gain */
 TTF[nbunch*Ncav+ncav]=ttf(ba,ncav);
 de = Charge[nbunch]*TTF[nbunch*Ncav+ncav]
 *(Fieldr[ncav]*cos(PhSync[ncav]-ph)
 -Fieldi[ncav]*sin(PhSync[ncav]-ph));

 ea = ea+de;
 Energy[nbunch*Ncav+ncav] = ea;
 ga = 1+ea/ma;
 ba = sqrt(1-1/ga/ga);
 }
 }
}

double ttf(double beta, int n)
{
 double x, y, yy, cells, gap;
 y = Beta[n]/(beta+1e-10);
 yy = MH_PI*(1-y)*GapLambda[n];
 gap = (1-yy*yy/6+yy*yy*yy*yy/120)/(1+y)/GapLambda[n];
 x = Mode[n]*(1-y);
 cells = sin(NCells[n]*x/2)/(NCells[n]*sin(x/2));
 return gap*cells;
}

SimulateField.m

function [cr,br,randstate] =
SimulateField(Cav,Mod,Bunch,General,Phloop,randstate)

if nargin>5, randn('state',randstate);end
br.randstate = randn('state');

NFill = General.Filltime/General.Stepsize;
NBeam = General.Beamtime/General.Stepsize;
NStep = NFill+NBeam;%+100;

br.Eoff = randn*General.Ecoherent;
br.Toff = randn*General.Tcoherent;
br.Ioff = randn*General.Icoherent;
br.Efluc = randn(NBeam,1)*General.Efluc;
br.Tfluc = randn(NBeam,1)*General.Tfluc;
br.Ifluc = randn(NBeam,1)*General.Ifluc;

Bunch.Time = Bunch.Time+br.Toff;
Bunch.Energy = Bunch.Energy+br.Eoff;
Bunch.I = Bunch.I*(1+br.Ioff/100);

 S.C.R.E.A.M – program documentation

 6-21

Bun = Bunch;

dt = General.Stepsize*1e-6;

NCav = length(Cav.Amplitude);
NMod = length(Mod);
NBun = length(Bun.N);

cr.sh1 = zeros(NCav,NStep);
cr.sh2 = zeros(NCav,NStep);
cr.ps1 = zeros(NCav,NStep);
cr.ps2 = zeros(NCav,NStep);

cr.CField = zeros(NCav,NStep);
cr.CForwd = zeros(NMod,NStep);
cr.CFwdpl = ones(NCav,NStep);
cr.CRvspl = zeros(NCav,NStep);
cr.CDrive = zeros(NCav,NStep);

cr.SField = zeros(NCav,NStep);
cr.SForwd = zeros(NMod,NStep);

cr.CCur = zeros(NCav,NBeam);
cr.ECur = zeros(NCav,NBeam);

br.Energy = zeros(NBun,NBeam);
br.Time = zeros(NBun,NBeam);

if (nargin<5), Phloop=[];end
if isempty(Phloop),
 General.doPhaseloop=0;
 PLIdx = [];
else
 General.doPhaseloop=1;
 initphaseloop;
end

NPhl = length(PLIdx);

simbeam = zeros(NCav,1);

% Lorentz Detuning Constant (has some fluctuation to it)
cr.K = -abs(Cav.KLorentz);
% Predetuning to compensate Lorentz Force
dwpre = Cav.dw;%-2*pi*Cav.Amplitude.^2.*(cr.K-Cav.KLorentz);
% Where the Lorentz Force will be stored
dwlor = 0*dwpre;
% Microphonics Coherent (0 Hz)
dwmic0 = dwpre+2*pi*Cav.Microphonics.*randn(NCav,1);
cr.w12 = pi*Cav.Frequency./Cav.Qloaded;
cr.dw = zeros(NCav,NStep);
RL = Cav.Qloaded.*Cav.Rshunt;

 S.C.R.E.A.M – program documentation

 6-22

if ~isfield(Cav,'Attenuation'),
 Cav.Attenuation = ones(size(Cav.Amplitude));
end
Conversion = sqrt(2*RL);
Cav.Feedback = Cav.Feedback./Conversion./Cav.Attenuation;

for km = 1:size(cr.SField,1)
 NOff=Cav.FillOff(km);
 NTau=Cav.FillTau(km)/dt;
 nTau=((0:(NFill-NOff)))/NTau;
 cr.SField(km,1+NOff:NFill+1) = 1-exp(-nTau)+Cav.FillTaylor(km)*(nTau-
1+exp(-nTau));
 cr.SField(km,1+NOff:NFill+1) =
cr.SField(km,1+NOff:NFill+1)/cr.SField(km,NFill+1)*Cav.Amplitude(km);
 cr.SField(km,NFill+1:end) = Cav.Amplitude(km);
end

IFac = 2*pi*Cav.Rshunt.*Cav.Frequency.*exp(-i*Cav.Phase)*dt*1e-6;

for km=1:length(Mod)
 AIFac = mean(IFac(Mod(km).Cavities)...
 ./(1-exp(-cr.w12(Mod(km).Cavities)*dt))...
 ./Conversion(Mod(km).Cavities));
 cr.SForwd(km,NFill+1:NFill+NBeam) = AIFac*sum(Bunch.I);
 cr.SForwd(km,1:NFill) =
mean(Cav.Amplitude(Mod(km).Cavities)./Conversion(Mod(km).Cavities))/2;
 cr.Sforwd(km,1:Cav.FillOff(Mod(km).Cavities(1)))=0;
end

ct0 = Cav.Time*ones(size(Bun.N'));
cf0 = Cav.Frequency*ones(size(Bun.N'));
E0 = cumsum(Cav.Egain);

for ks=1:(NFill+NBeam)
 kb=ks-NFill;
 cr.dw(:,ks) = dwmic0+dwlor+2*pi*Cav.FastMicrophonics.*randn(NCav,1);
 if ks>NFill,
 Bun.Time = Bunch.Time+br.Tfluc(kb);
 Bun.Energy = Bunch.Energy+br.Efluc(kb);
 Bun.I = Bunch.I*(1+br.Ifluc(kb)/100);
 ar = acceleration(Cav,Bun,cr.CField(:,ks));
 cr.ECur(:,kb) = (ar.Energy*Bun.N)/sum(Bun.N)-E0;
 cr.CCur(:,kb) = (exp(2i*pi*(ct0-ar.Time).*cf0).*ar.TTF)*Bun.I;
 br.Energy(:,kb)= ar.Energy(end,:)';
 br.Time(:,kb) = ar.Time(end,:)';
 simbeam = IFac.*cr.CCur(:,kb);
 end
 if ks<(NFill+NBeam)

 cr.CForwd(:,ks+0) = dimsum((cr.SField(:,ks)-
cr.CField(:,ks)).*Cav.Feedback,...
 Cav.Module,NMod)+cr.SForwd(:,ks);
 % phase shifter and conversion to Ue

 S.C.R.E.A.M – program documentation

 6-23

 Drive =
cr.CForwd(Cav.Module,ks).*cr.CFwdpl(:,ks).*Conversion.*Cav.Attenuation;
 cr.CDrive(:,ks+1) = Drive+(cr.CField(:,ks)-
Drive).*cr.CRvspl(:,ks)./(1-cr.CRvspl(:,ks));
 % cavity dynamics
 CP = 2*cr.w12.*cr.CDrive(:,ks+1)./(cr.w12-
i*cr.dw(:,ks));
 cr.CField(:,ks+1) = (cr.CField(:,ks)-simbeam-CP).*exp(-(cr.w12-
i*cr.dw(:,ks))*dt)+CP;
 % Lorentz-Force Detuning
 dwlor = detuning(cr.CField(:,ks),dwlor,dt,cr.K);
 if General.doPhaseloop,
 dophaseloop;
 %dophaseloop_ideal;
 end
 %end of ks<NFill+NBeam
 end
 %end of for ks
end

if isfield(General,'Downsample'),
 cr.CField = cr.CField(:,1:General.Downsample:end);
 cr.SField = cr.SField(:,1:General.Downsample:end);
 cr.CForwd = cr.CForwd(:,1:General.Downsample:end);
 cr.SForwd = cr.SForwd(:,1:General.Downsample:end);
 cr.CFwdpl = cr.CFwdpl(:,1:General.Downsample:end);
 cr.CCur = cr.CCur(:,1:General.Downsample:end);
 cr.ECur = cr.ECur(:,1:General.Downsample:end);
 cr.dw = cr.dw(:,1:General.Downsample:end);
 end

Detuning.m

function dwn=detuning(field,dwo,dt,K);

if nargin<4, K=-1.0;end
tau=3e-4;

dwn=dwo-dt./tau.*dwo+2*pi*dt./tau.*K.*abs(field).^2;

Dimsum.c

#include <mex.h>
#include <math.h>

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray
*prhs[])
{
 int NMod, NCav, k;
 double *IPr, *IPi;
 double *SPr, *SPi;
 int32_T *idx;
 mxArray *FieldTmp;

 S.C.R.E.A.M – program documentation

 6-24

 if(!mxIsInt32(prhs[1]))
 mexErrMsgTxt("Index Values must be 32 Bit Integer!");
 idx = (int32_T*)mxGetData(prhs[1]);

 NMod = (int)mxGetScalar(prhs[2]);
 NCav = mxGetNumberOfElements(prhs[0]);

 if(mxIsComplex(prhs[0])){
 FieldTmp = mxCreateDoubleMatrix(NMod,1,mxCOMPLEX);
 SPr = mxGetPr(FieldTmp)-1;
 SPi = mxGetPi(FieldTmp)-1;
 IPr = mxGetPr(prhs[0]);
 IPi = mxGetPi(prhs[0]);
 }else{
 FieldTmp = mxCreateDoubleMatrix(NMod,1,mxREAL);
 SPr = mxGetPr(FieldTmp)-1;
 IPr = mxGetPr(prhs[0]);
 }
 plhs[0] = FieldTmp;

 for(k=0;k<NCav;k++){
 SPr[idx[k]] = SPr[idx[k]]+IPr[k];
 }
 if(mxIsComplex(prhs[0]))
 for(k=0;k<NCav;k++){
 SPi[idx[k]] = SPi[idx[k]]+IPi[k];
 }
}

initphaseloop.m

%Parameter initialization for differential/proportional phaseshifter

PLIdx = Phloop.CavNo;
ALG = Phloop.AmpGain;
PLG = Phloop.Gain;
PLTau = General.PhaseTau;
ALD = Phloop.AmpDGain;
PLD = Phloop.DGain;
PLdel = 0;

PLSat = pi/4;
PLSatn = 1*2*PLSat/pi;
PLIni = 1*pi/4;
PLsin = sin(PLIni);
PLIna = cos(PLIni);
ALSat = 1.2;

psh1 = 0;
psh2 = 0;
cr.sh1(PLIdx,1) = psh1;
cr.sh2(PLIdx,1) = psh2;

 S.C.R.E.A.M – program documentation

 6-25

dophaseloop.m

%simulates proportional-differential phase-shifter

afld = cr.SField(:,ks)-cr.CField(:,ks);
mfld = dimsum(afld,Cav.Module,length(Mod))./[Mod(:).N]';

dfld = afld(PLIdx)-mfld(Cav.Module(PLIdx));

if ks==1
 ofld = dfld;
end;

damp = real(dfld).*ALG+real(dfld-ofld).*ALD;
dpha = imag(dfld).*PLG+imag(dfld-ofld).*PLD;

dsh1 = PLSatn*atan((dpha+damp/PLsin)/PLSatn);
dsh2 = PLSatn*atan((dpha-damp/PLsin)/PLSatn);
psh1 = psh1+dsh1/PLTau;
psh2 = psh2+dsh2/PLTau;
cr.sh1(PLIdx,ks+1) = psh1;
cr.sh2(PLIdx,ks+1) = psh2;

if ks>PLdel,
 cr.CFwdpl(PLIdx,ks+1)=...
 (exp(i*(cr.sh1(PLIdx,ks-PLdel)-PLIni))+...
 exp(i*(cr.sh2(PLIdx,ks-PLdel)+PLIni)))...
 /PLIna/2;
 cr.CRvspl(PLIdx,ks+1)=Cav.Reactive(PLIdx).*sin(psh1).*exp(i*psh2);
end;

ofld = dfld;

